INTRODUCTION
STEGANOGRAPHY

Steganography is essentially a security measure for passing concealed messages, so as the message will not be detected. The goal of steganography is to hide the fact that the message exists. Steganography, which comes from the Greek language, meaning covered or secret writing, is the art of hiding information such as a message within images, audio, text and video. Steganography encompasses methods of transmitting secret messages through innocuous cover carriers in such a manner that the very existence of the hidden message is undetectable.
 This project aims at the implementation of the concept of steganography.There are many methods of implementation of this concept available to us but the method I have used here is ‘The LSB substitution method’. These techniques are based on modifying the least significant bits (LSBs), of the pixel values in the space domain. In a basic implementation, these pixels replace the entire LSB-plane with the stego-data; on average, 50% of the LSBs are flipped .It can be shown that fidelity of the stego-image measured in peak-signal-to-noise ratio with respect to the cover is 51.1dB, representing a very high degree of imperceptibility compared to the lower bound of 39dB generally accepted by researchers of watermarking. With more sophisticated schemes in which embedding locations are adaptively selected, depending on human vision characteristics, even less distortion is achievable. Popular tools include EzStego, S-Tools, and Hide and Seek.
 In general, simple LSB embedding is susceptible to image processing, especially lossy basic LSB approach. Bit-planes of a grayscale image are sketched on the left with MSB on top. Dark and light boxes represent binary values 0s and 1s, respectively, of the pixels on different bit-planes. The LSB-plane of the cover image on the top right is replaced with the hidden data in the middle, which becomes the LSB-plane of the stego-image.

Various steganographic tools have been developed, many available online. In a sense, some simple methods are already defeated due to the relentless endeavor of steganalysts. Meanwhile, countermeasures against steganalysis are also emerging.
Tools that can withstand, to some degree, both visual and statistical attacks are being introduced. For example, in data embedding, much effort has gone toward preserving the statistical characteristics of the cover media. To combat steganalytic tools based on analyzing the increase of unique colors in an image, new embedding methods may be devised that avoid creation of new colors. Alternatively, modifications leading to detectable artifacts may be compensated for after embedding while ensuring the intended recipient is still able to extract the secret message.

Apart from their law enforcement/intelligence and anti-terrorist significance, steganographic techniques also have peaceful applications, including: in-band captioning; integration of multiple media for convenient and reliable storage, management, and transmission; embedding executables for function control; error correction; and version upgrading. Computer specialists, signal-processing researchers, and information security professionals should expect to devote much more attention to the challenging area of information hiding and detection.
IN this era of digital information, huge amounts of digital multimedia data are being transmitted over the internet every single second. However, there may be some confidential messages that are of special type of importance and thus need to be protected during transmission. Hence how to protect a secret message during transmission is a focus of attention.Steganography is a simple and popular way of providing protection for secret messages digitally. In steganographical schemes, digital images are often used as host images due to their popularity on the Internet. The original image in which people hide the secret data is called “THE HOST IMAGE”.
 When the hiding process is completed, the host image has been slightly changed. We called the changed image “THE STEGO IMAGE”. In this project it has been referred as “THE MODIFIED IMAGE”. In data hiding techniques, the term “IMAGE QUALITY” refers to the quality of the stego image, and the term “HIDING CAPACITY “indicates the largest quantity of secret data that can be embedded in the stego image.
 If a stego or the modified image has good image quality, it can avoid being suspected during the transmission of the hidden secret.
Therefore, data hiding techniques should satisfy the following requirements:-

 i.) INVISIBILITY:-

 The stego or the modified image should not appear to have gone under manipulation. This means that when one sees the image he must feel the image to be just an another image in transmission. This lets the image not being suspected in any reason .This characteristic of the stego or the modified image is desired to be in the highest grade or degree.

ii.) HIDING CAPACITY:-

 The number of secret bits that can be hidden into the host image should be as large as possible. It is a desired thing that the size of the secret data file must be smaller then the host image or the original image file (in the project we have taken the host image to be at least 8 times larger then the secret data file).This is done so as to increase the size and the quantity of the data which can be hidden in the host or the original image. As large the size of the host image is, more the quantity of the data that can be hidden in the host image and thus more is the amount of secret information that can be sent via the host image.

iii.) DATA SECURITY:-

 The embedded secrets must be secure. This simply means that the secret message cannot be extracted by the illegal user. When one sees the image he must feel the image to be just an another image in transmission. Also the method which is used must be secret enough to accomplish the desired task. In this project we have used the LSB substitution method
DATA HIDING TECHNIQUES
 There are many kinds of data hiding techniques proposed to achieve the purpose of secure data transmission .However, according to the different kinds of images, their data hiding strategies are also different. For multi-tone images, one simple method is the least significant bits (LSB) hiding scheme. In the LSB method, the secret message is embedded into the host image by replacing the least significant bits of each pixel. As for the binary images, they often embed the secret(s) into the boundary regions rather than black or white regions. With regard to the half tone images, the secret(s) are often hidden into non-clustering regions.

Besides, data hiding techniques can be categorized into two types:

1.) Methods in the spatial domain

2.) Methods in the frequency domain.
 In the spatial domain, the secret messages are embedded in the image pixels directly. On the other hand, in the frequency domain, the host image is first transformed into its frequency domain by using discrete cosine transformation (DCT) or discrete wavelet transformation (DWT), and then the secret messages are embedded in the transformed coefficients.
 In 1998, Wu and Tsai proposed a spatial domain data-hiding technique on the basis of multiple-base number conversion. In their scheme, they find the differences between the host image and the decompressed host image. The secret bits are then ‘embedded’ into those differences by applying the multiple base number conversion .The main advantage of their scheme is its simplicity, but the image quality is not good enough.
 In 2002, Chao et al proposed a data hiding scheme for hospital electronic data exchange. Being slightly more complex then the Wu-Tsai scheme, their scheme is similar to the Wu-Tsai scheme in that both are based on the number conversion. The multiple base number conversion performs several division operations so that the scheme is not easily implemented on the computer hardware.
Besides, the residue of each division operation cannot be always controlled in small scale. The scale affects the image quality.
 The very concept of the project was inspired from the paper by the journal named “IEE PROCEEDINGS: IMAGE AND SIGNAL PROCESSING” .The paper was titled “HIDING DATA IN MULTITONE IMAGES FOR DATA COMMUNICATIONS”. The paper was published in the April 2004 issue. The authors of this paper are Mr.C.C.Chang, Mr.J.C.Chuang and Mr. Y.P.Lai. who are currently working with “THE DEPATRMENT OF COMPUTER SCINCE AND INFORMATION ENGINEERING, NATIONAL CHUNG CHENG UNIVERSITY, TAIWAN, and REPUBLIC OF CHINA”.

 Creative methods have been devised in the hiding process to reduce the visible detection of the embedded message. Steganography simply takes one piece of information and hides behind another. Digital watermarking is a sub-set of steganography. Digital watermarking is used for embedding hidden trademarks in software, to keep track on piracy.
 The earliest records of steganography were recorded by the Greek historian Herodotus and date back to ancient Greek times. When the Greek tyrant Histiaeus was held as a prisoner by king Darius in Susa during the 5th century BCE, he had to send a secret message to his son-in-law Aristagoras in Miletus. Histiaeus shaved the head of a slave and tattooed a message on his scalp. When the slave's hair had grown long enough he was dispatched to Miletus.
 Ancient Romans used to use write between lines using invisible inks made from fruit juices, milk and urine. They were made visible when heat was applied to the writing. During World War II invisible inks were also used to send secret messages. This project aims to give a general introduction to steganography - what it is and some methods used for hiding data in text, image, video and audio. We will also take a look at steganalysis, which is the science of detecting steganography.

Steganographic methods

 There are many different methods of information hiding within an image. These methods range from least significant bit (LSB) or noise insertions, manipulation of image and compression algorithms, and modification of properties such as luminance. Steganography is applied to images in order to hide sensitive information. The sensitive information is usually hidden behind an innocent looking document that is usually an image (e.g.BMP, JPEG). Steganography works by combining the message with a cover media such as a picture, which creates a stego-medium or stego-carrier. Use of a stego-key or a secret password may be required in addition to take extra measures against steganalysis attacks. Cover medium + embedded message + stego-key = stego-medium
The secret message is usually put inside the dark space of a picture or a white space of any text message. 'Carrier' or 'Container' is the first item that is needed for steganography. The graphic file can act as a host, which holds the secret message .The ‘carrier’ or container looks like a normal image and to the human eye the picture looks quiet normal and above suspicion. The message the person wants to hide is placed within the carrier. To do this a steganographic technique is used. One of the easiest techniques is to “replace the least important bit (LSB) of each byte in the carrier with a single bit for the secret message”.
 Other difficult methods, which include “selecting certain bytes to pixel mapping to maintain colour scheme, in images, hiding information in the coefficients of the discrete cosine, fractal or wavelet transform of an image, the applied duplicate functions that adapt bit pattern to a known statistical distribution.
The methods above make it easier to hide information in image files, thus making the document undetectable to the human eye. The ‘carrier’ or ‘container’ is referred to as stego-medium; there is possibility to encrypt the secret message within stego-medium so that the secret message is even more difficult to detect by anyone.

Audio methods

 Audio is another way of hiding messages, such as telephone lines which are a very good way of passing hidden information. This can be done when a person is having a conversation and in the background there is a audio message that is also be carried out which has a sampling rate that is of a higher frequency, beyond the hearing capabilities of a human. The coded message can only be done at a particular stage of the conversation to get the message right. E.g. A noise environment (such as recording traffic in the street) permitted 350 characters per second to be transmitted. In a quieter environment it was only possible to insert about 20 characters per second without being noticed

Video methods

 An example of steganographic video method can be used in video conferencing, where hidden data is embedded into video stream. The data or the speech data is compressed using vector quantization, into a digital video signal. Each video frame is transformed by an orthogonal wavelet transform.
Steganalysis

 Steganalysis is the term used for decoding or attacking a steganographic message so as that the hidden message is revealed. There are several ways to go about attacking a steganographic message. These ways are based upon the assumption that there is a suspicion of a hidden message within the transmitted media, or the steganalyst has tools to detect such an event. A known stego attack is where the original cover-object and the stego-object are known along with the steganography algorithm tool. The stego-object could be an image with a message behind it. The original cover-object could be the original media that has not been altered. A stego-only attack is where only the stego-object is known. A chosen stego attack is when the availability of the steganographic tool and the stego object are at hand. A steganographic tool is used to implement and detect hidden information. A known message attack is the analysis of known patterns that correspond to hidden messages, which may help against attacks in the future. A known cover attack is when the original cover-object and the stego object are both available to decipher the message. The steganalyst generates a stego-object from some steganography tool or algorithm from a chosen message. The goal in this attack is to determine corresponding patterns in the stego-object that may point to the use of specific steganography tools or algorithms. (This is the most powerful attack)

 Steganography is extensively used throughout industry; there are many industrial sectors that use steganography such as Law Enforcement, Media, Networking and Protection of authors work. Many companies offer steganography tools that are used to protect sensitive information. However it is vital that Law Enforcement have these tools, so that they can decrypt unlawful intercepted communication and secret messages, if they lack these tools then society is threatened.
The most common problem with current information hiding methods is that the original media is somewhat distorted, making it more apparent that there is a hidden message. This distortion normally cannot be removed.

 Another problem with steganography is that once it is realised that there is a hidden message within the media that is used for communication, it is normally relatively easy to extract the message. The only answer is to create new steganographic methods that cannot be easily detected. Going back to ancient times people have used steganographic techniques to pass messages. Today’s technological advances provide an ideal means for steganographic methods to exist. We think that steganography will play an increasing role in the future of secure communication in the "digital world." It is the ideal way to send covert messages within various digital forms.
To maintain simplicity and to get rid of the complex technicalities of the subject, the file format which was employed for the purpose of hiding the data i.e. the host or the original image was the .bsq file format and the secret data file was taken to be the text file (.txt file format). The reason of choosing the .bsq file format was that due to its simplicity which the uncompression is.
 The other formats like the .jpg or the .jpeg format, the.bmp format, the .jiff format, the .tif or the .tiff format, etc. are compressed formats and separate methods have to be taken to uncompress embedd data in them and recompress them.
AN INTRODUCTION TO DIFFERENT IMAGE FILE FORMATS

BSQ (Band Sequential Format)

In its simplest form, the data is in BSQ format, with each line of the data followed immediately by the next line in the same spectral band. This format is optimal for spatial (X, Y) access of any part of a single spectral band.

This BINARY Raster data format (Band SeQuential Format) includes two files: an ASCII header file that describes the data (orderfilename.hdr.txt), and a "flat binary data file" that contains the data (orderfilename.bsq). This format is recommended for large raster data and satellite images. The generic header contains all information you will need to understand the dereferencing of the data contained in your BSQ file.

Header files contain information about the dimensions of the image, the data type and format, and other pertinent information, including image projection parameters. The header file contains information needed to read the data file into a software package such as IDL/ENVI or Erdas/Imagine and many freeware image processing programs. Each line in the data file is followed immediately by the next line in the same band, until the entire band has been written. If there are multiple bands within the data file, the next complete band is written in the same way, until all bands have been written to the file. Bands may be spectral bands, as in satellite images, data quality or ancillary information, or in the case of time-series data, each "band" would represent a slice in time.
BIL (Band Interleaved by Line Format)
Images stored in BIL format have the first line of the first band followed by the first line of the second band, followed by the first line of the third band, interleaved up to the number of bands. Subsequent lines for each band are interleaved in similar fashion. This format provides a compromise in performance between spatial and spectral processing and is the recommended file format for most ENVI processing tasks.
BIL (Band Interleaved by Line) and BSQ (Band Sequential)

These are binary formats which are commonly used in remote-sensing and high-end GIS .In a BIL, the data is arranged in header less columns sorted by row ("row-major") .BIL and BSQ are just raw data, so a separate text header file (.hdr) is required to indicate the rows, columns, bit depth, etc. The following diagram shows the difference between BIL, "band interleaved by pixel" (BIP), and BSQ, for an RGB image which is 5 pixels wide and 3 pixels high

	BIL
	BIP
	BSQ

	 R R R R R
 G G G G G

 B B B B B

 R R R R R
 G G G G G

 B B B B B

 R R R R R
 G G G G G

 B B B B B
	R G B R G B R G B R G B R G B

R G B R G B R G B R G B R G B

R G B R G B R G B R G B R G B

	 R R R R R

 R R R R R

 R R R R R
 G G G G G

 G G G G G

 G G G G G

 B B B B B

 B B B B B

 B B B B B

JPEG FILE FORMAT

JPEG (pronounced "jay-peg") is a standardized image compression mechanism. JPEG stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.JPEG is designed for compressing either full-color or gray-scale images of natural, real-world scenes. It works well on photographs, naturalistic artwork, and similar material; not so well on lettering, simple cartoons, or line drawings. PEG handles only still images, but there is a related standard called MPEG for motion pictures.

JPEG is "lossy," meaning that the decompressed image isn't quite the same as the one you started with. (There are lossless image compression algorithms, but JPEG achieves much greater compression than is possible with lossless methods.) JPEG is designed to exploit known limitations of the human eye, notably the fact that small color changes are perceived less accurately than small changes in brightness. Thus, JPEG is intended for compressing images that will be looked at by humans. If you plan to machine-analyze your images, the small errors introduced by JPEG may be a problem for you, even if they are invisible to the eye.

A useful property of JPEG is that the degree of lossiness can be varied by adjusting compression parameters. This means that the image makers can tradeoff file size against output image quality. You can make *extremely* small if you don't mind poor quality; this is useful for applications such as indexing image archives. Conversely, if you aren't happy with the output quality at the default compression setting, you can jack up the quality until you are satisfied, and accept lesser compression.

Another important aspect of JPEG is that decoders can trade off decoding speed against image quality, by using fast but inaccurate approximations to the required calculations. Some viewers obtain remarkable speedups in this way. (Encoders can also trade accuracy for speed, but there's usually less reason to make such a sacrifice when writing a file.)

JFIF (JPEG File Interchange Format)

Typical file name extensions

.jpg

.jpeg
Magic bytes

0xff 0xd8 at file offset 0x00
MIME types image/jpeg

image/pjpeg (for progressive JPEGs)
Description

In 1990, the Joint Photographic Experts Group defined various methods to be used for photo image compression. They also defined a bit stream. C-Cube added a few details to make the interchange of JPEG bit streams possible. Their format was called JPEG File Interchange Format, or short, JFIF. JPEG2000 is not an extension of JPEG but a completely new development.
File structure

A JPEG bitstream is a sequence of data chunks, each chunk starts with a marker value. A marker is a 16 bit integer value, stored in big endian byte order, with the most significant byte set to 0xff. The lower byte of the marker value determines its type. A marker is followed by a 16 bit integer value for the size.
Compression types

Several methods, both lossless and lossy.

Most popular: Baseline DCT / Huffman.
Image types

Continuous tone images (photos) with 5 or more bits per channel.

Most popular color types: grayscale, 8 bits (one channel) and YCbCr color, 24 bits (three channels).
Popularity

Very high. Standard file format for the exchange of photos.
Other formats

JPEG (or at least a part of its compression types) can be used as compression type within TIFF. There are two numbers for it, old-style, and modern.

JPEG File Interchange Format is a minimal file format which enables JPEG bitstreams to

be exchanged between a wide variety of platforms and applications. This minimal format

does not include any of the advanced features found in the TIFF JPEG specification or any application specific file format. Nor should it, for the only purpose of this simplified

format is to allow the exchange of JPEG compressed images.

TIFF FILE FORMAT (.TIF file extension, pronounced Tiff)
 TIFF is the format of choice for archiving important images. TIFF is THE leading commercial and professional image standard. TIFF is the most universal and most widely supported format across all platforms, Mac, Windows, Unix. Data up to 48 bits is supported. TIFF supports most color spaces, RGB, CMYK, YCbCr, etc. TIFF is a flexible format with many options. The data contains tags to declare what type of data follows. New types are easy to invent, and this versatility can cause incompatibly, but about any program anywhere will handle the standard TIFF types that we might encounter. TIFF can store data with bytes in either PC or Mac order (Intel or Motorola CPU chips differ in this way). This choice improves efficiency (speed), but all major programs today can read TIFF either way, and TIFF files can be exchanged without problem. Several compression formats are used with TIF. TIF with G3 compression is the universal standard for fax and multi-page line art documents. TIFF image files optionally use LZW lossless compression. Lossless means there is no quality loss due to compression. Lossless guarantees that you can always read back exactly what you thought you saved, bit-for-bit identical, without data corruption. This is a critical factor for archiving master copies of important images. Most image compression formats are lossless, with JPG and PCD files being the main exceptions. Compression works by recognizing repeated identical strings in the data, and replacing the many instances with one instance, in a way that allows unambiguous decoding without loss. This is fairly intensive work, and any compression method makes files slower to save or open.
 Bitmap-File Formats

Windows bitmap files are stored in a device-independent bitmap (DIB) format that allows Windows to display the bitmap on any type of display device. The term "device independent" means that the bitmap specifies pixel color in a form independent of the method used by a display to represent color. The default filename extension of a Windows DIB file is .BMP.

Bitmap-File Structures
Each bitmap file contains a bitmap-file header, a bitmap-information header, a color table, and an array of bytes that defines the bitmap bits. The file has the following form:

BITMAPFILEHEADER bmfh;

BITMAPINFOHEADER bmih;

RGBQUAD aColors [];

BYTE aBitmapBits [];

The bitmap-file header contains information about the type, size, and layout of a device-independent bitmap file. The header is defined as a BITMAPFILEHEADER structure.The bitmap-information header, defined as a BITMAPINFOHEADER structure,

specifies the dimensions, compression type, and color format for the bitmap.
 AN INTRODUCTION TO TEXT FILE FORMATS: TEXT AND BINARY
Computer files can be divided into two broad categories: binary and text. The distinction is vague because in many contexts, any file is a sequence of digital bits. For instance, to the circuits which handle information read from or written to a disk, there is no distinction between text data and any other sort. The software concerned with those circuits likewise makes no such distinction. Humans, on the other hand, are concerned with this distinction.
TEXT FILES

Text files (plain text files) are files with generally a one-to-one correspondence between the bytes and ordinary readable characters such as letters and digits. Therefore any simple program to view a file makes them human-readable. Generally, they contain ASCII characters and some control characters such as tabs, line feeds and carriage returns without any embedded information such as font information, hyperlinks or inline images. But sometimes text files contain more than ASCII characters if they are encoded by East-Asian encoding such as SJIS or Unicode. If the files are written in Unicode, a UTF standard such as UTF-8 defines the encoding format. Although text files are generally human-readable, they can of course be used for data storage by computer programs. This may be done because text files avoid problems which may arise with binary files, such as problems of endianness or the byte-length of integers.

Text files can have the MIME type "text/plain", often with suffixes indicating an encoding. Common encodings for plain text include Unicode UTF-8, Unicode UTF-16, ISO 8859, and ASCII.A plain text is textual material, usually in a disk file, that is (largely) unformatted. A webpage with formatted text is not in plain text in this sense, but the HTML source is. The distinction is usually not clear-cut.

Source code of the computer programs is usually written as a text file, but once compiled; it turned into a binary file as described below.

Transferring text files between UNIX, Macintosh, and Microsoft Windows or DOS computers can be problematic, as each platform uses different characters to signify a line break. Further cross-platform confusion occurs because many non-Unix systems have traditionally used an Extended ASCII character encoding, where the first 128 byte values conform to ASCII and where the upper 128 byte values are mapped to textual or punctuation characters, such as curly quotes or characters having a diacritical mark. Prior to the advent of Mac OS X, Macintosh users would call a document a text file so long as all of its non-white space bytes were printable in the Macintosh environment.

The related term, plaintext, is most commonly used in a cryptographic context, while clear text usually refers to lack of protection from eavesdropping. Usage of these terms is such that there is some confusion amongst them, especially among those new to computers, cryptography, or data communications.
BINARY FILES

Binary files, in contrast, usually contain non-alphabetic characters, and may contain any byte value at all. They are generally used to store data rather than textual material in plain text form. Computer programs are typical examples, as the data and CPU instructions they contain can — in principle — be any binary value. As a result, compiled applications are often simply referred to as binaries, as opposed to source code, which is contained in plain text files. But binary files can also be image files, sound files, compressed files, etc. — in short, any file content whatsoever, including plain text. Usually the specification of a binary file's file format indicates how to handle that file.

Binary files are often encoded into a plain text representation to improve survivability during transit, using encoding schemes such as Base64.

It is a common misconception that geeks and nerds can read a binary file. The fact is that binary is nothing more than a number system. The computer can read the file in any of a number of ways. Binary files are usually encoded in bytes, which mean the binary digits are grouped in eights. If you open this file in Notepad, for example, each group of eight bits will be translated as a single character, and you will see a text file (see above). If, however, you were to open it in some other application, that application will have its own use for each byte: maybe the application will treat each byte as a number, and it will output a stream of numbers between 0 and 255. If the file were an EXE file, then Windows would attempt to treat each byte or set of bytes as an instruction.

PROBLEM IDENTIFICATION AND REQUIREMENT ANALYSIS

Problem Identification:
 The introduction part of the report will make clear the need of the system and how the system fits into overall business does.

Need of System:
Images are the most popular cover media for steganography and can be stored in a straightforward bitmap format (such as BSQ) or in a compressed format (such as JPEG). Palette images are usually in the GIF format. Information hiding is accomplished either in the space domain or in the frequency domain. In terms of insertion schemes, several methods (such as substitution, addition, and adjustment) can be used. One adjustment approach is Quantization Index Modulation (QIM), which uses different quantizers to carry different bits of the secret data. Although a simple unified method for classifying these techniques does not exist, some popular approaches are used in downloadable steganographic tools or found in the literature.

Data embedding has also been found to be useful in covert communication, or steganography. The goal was and still is to convey messages under cover, concealing the very existence of information exchange
The highlights of my project are: -

 i. Display of the image (.bsq image) file and the data (.txt file).

ii. LSB substitutions in the image file (to modify the image file).

iii. Retrieval of the data from the modified image

Environmental Acceptance:
This section describes the environment in which the system is to be put in and the acceptance of the system in the overall business. This system is to be run in the environment of WINDOWS. No specific hardware requirements are there, but still the basic hardware pare must be there.

Requirement analysis:
A requirement, simply put, is something the program must do. A requirement defines what the system will do, but not how it will do it. Requirement analysis deals with the basic function that the system is required to do within the specific constrain.

[image: image1]

 Fig. 1: Requirement Analysis Process
The activities shown above are iterative in nature with continual feedback from each activity to other activity. The process can be viewed as a cycle starting from the domain’s understanding and ending with requirement validation.

Domain Understanding:

The first thing I studied upon was to how the concept of steganography could be implemented .This was necessary so as to know the technical know-how of the tools being used for implementing this concept. Then I thought upon the possible measures, which could be taken to handle this situation. The best way we could think of was to provide the user with the modified image of the original image file which had the data hidden in it. Along with it the user was provided with a retrieving program for the data file by the help of which he could retrieve the original data hidden in the image file. To get friendly with the concepts and the facts of this project I concelted my project guide. Along with his ideas and information I kept myself updated with the help of internet. I also referred to the monthly journals of IEEE .In fact the very concept of the project was inspired from the paper by the journal named “IEE PROCEEDINGS: IMAGE AND SIGNAL PROCESSING” .The paper was titled “HIDING DATA IN MULTITONE IMAGES FOR DATA COMMUNICATIONS”. The paper was published in the April 2004 issue. The authors of this paper are Mr.C.C.Chang, Mr.J.C.Chuang and Mr. Y.P.Lai. who are currently working with “THE DEPATRMENT OF COMPUTER SCINCE AND INFORMATION ENGINEERING, NATIONAL CHUNG CHENG UNIVERSITY, TAIWAN, and REPUBLIC OF CHINA”

Requirement Collections:

For the purpose of requirement collection I referred many old journals which described the concepts of steganography .This research-work lead me to the decision as to which and how the concept was to be implemented. I decided to employ the LSB substitution method to implement this concept of steganography. I came to know about the process only after interacting with my project guide Mr. Raghavan with whose precious advice I had this vision.

Classification:

After thoroughly understanding the domain we have classified the program into three main divisions. These divisions are:

 i. Display of the image (.bsq image) file and the data (.txt file).

iv. LSB substitutions in the image file (to modify the image file).

v. Retrieval of the data from the modified image

 Fig. 2: Classification Diagram
Conflict Resolution:

While making this project many conflicts regarding the image media existed. The concept and difference of image and picture was not clear to me. I thought that the image formats were the exact forms as they were in real life and an image was the graphical representation of a picture (which is an analog form). But this perception was gone when I was told that an image file was a digital data and a picture was an analog form of any object. My concepts were cleared when I came to know about the compression of the image file and the various compressions.
 To avoid the technical difficulties regarding the hiding of data in a compressed image file I decided to adopt the image file with no compression i.e. the .bsq file format. To present and implement my project in the best possible way I chose “C” language as the developing tool.

Prioritization:

The priority of this project was to prepare the module required for the LSB substitution method. After this module was completed the obvious module was the retrieval of the data from the modified image file. Lastly after completing these tasks the module came which had the responsibility of displaying the image and the data files. To implement this I used graphics programming in “C”. The priorities while doing the project are listed below:

i. Implementing the LSB substitution method to modify the image file.

ii. Retrieval of the data from the image file.

iii. Display of the image and the data files.

Requirement Validation:

After the requirement study, I had to check the validity of the information I had received from internet and the IEEE journals. The information and data received by me was sorted according to their priority and uses. It was checked whether the information I got about the system is complete or not and this was checked by my project guide Mr. Raghavan

Functional requirements Definition:

The software is supposed to input the desired data which is to be hidden by the user in the text format. It performs operations as per the details and shows the original image. Also it shows the data file which is to be hidden. After that it displays the modified image file and the retrieval program displays the retrieved data.

Non-Functional requirements Definition:

This section includes the restrictions imposed on the freedom of design along with the response time and memory requirements.

Constraints imposed:

The main constraint was the time given to us to complete the project. But still I managed to complete the project and the given time.

Memory Requirements:

As such, there are no memory constraints for our project.

Response time:

Being a real time system, the quick response regarding the substitution and the retrieval is a must. As soon as the substitution process takes place, the main program should show the change. This requires quick response and proper repainting of screen. Due to the graphics driver (accelerator) processing is a bit slow and the switching up of the program in the ‘GRAPHICAL’ and the ‘CRT’ mode and thus it shows a slightly slow response.

Requirement analysis tools:

Various tool requirements to complete the project are:

Software tools:

i. TC development compiler
Hardware tools:

i. Colour monitor

ii. Any fast microprocessor

iii. Memory storage disk with couple of MB space

iv. Keyboard

v. Mouse

I have used “C” language in the implementation of the concept.The “C” language was chosen due to its fast compilation time and its powerfulness in handling the concept of the program. Further the ease of programming and the interactive graphics environment lead to this decision of choosing “C” as the developing tool in this project.
SYSTEM ANALYSIS

Cost Benefit Analysis:

Cost benefit analysis forms the heart of analysis part. As money in the main driving sources for any project thus the analysis of cost and benefit is the essential part. Basically, as my project is just a modern project done at a minor level so the investment on it is near to nothing. Still some nominal expenditure was there. In development cost estimates for a system, we need to consider several cost elements.

Some of them are listed below:

Hardware cost:

The hardware cost includes the computer system investment and other peripheral investment.

Personal cost:

Of course, personal costs were there. Personal cost includes the conveyance expenditure, as to gain any information about the subject and to meet the experts .Also the memory storage devices like a pen drive and a floppy or cd-rom need a nominal amount of money. But still the personal cost was almost nothing

Facility cost:

These expenses were related to preparation of physical site where the application will be in operation. There are no such expenses yet.

Operating cost:

This cost is related to day-to-day expenses. We had in terms of testing which will be discussed in further section.

Supply cost:

This cost includes the expenditure related to use of paper, ribbons, CD, floppy, etc.

Why only C language:

Discussion about C and its attributes will find this report to be very short. Many books can be written on C but here I will give some of the important and essential features of C that are responsible for its selection as the coding language of our project.

To be very frank, I have chosen this language, as it is the language of today. It satisfies every aspect of a good Language and the market demand of the professionals working in this language is very high. This is not the sole reason of choosing the language. Other important reasons are enlisted and explained below:

1. C as one of the most powerful languages:
C is undoubtedly the most powerful language available today .The graphics handling capability of C is indeed superb.C language is so popular because it is indeed:

1.) Simple

2.) Reliable

3.) Easy to use.

4.) Highly capable.

5.) Compact and coherent.

C is said to be a one man language. The three important aspects of any language are:-

1.) The way it stores data

2.) The way it accomplishes the input and the output

3.) The operators it uses to transform and combine data.

SYSTEM MODELLING

While developing the model of Steganography application I have considered every system development model. Being amateur, I found the Evolutionary Model to the best choice. First of all let’s have some attention on what basically the evolutionary model is?

Evolutionary model:

Evolutionary development is based on the idea of developing an initial implementation, exposing this to user comment and refining this through many versions until an adequate system has been developed.

Rather than have separate specifications, development and validation activities these are carried out concurrently, with rapid feedback across activities.

There are two types of evolutionary development:

1. Exploratory programming where the objective of process is to work with the customer to explore their requirement and deliver a final system. The development starts with the parts of the system which are understood. The system evolves by adding new features as the customer proposes them.

2. Throw-away prototyping where the objective of the evolutionary development process is to understand the customer’s requirements and hence develop a better requirements definition for the system

Although it is well known to everybody that the evolutionary development model has some pitfalls but still we have used it because it was a very vast project and taking the bird’s eye view of this project in the beginning was not possible for us. This is a reason why we have chosen the evolutionary model.

One of the outputs of the requirement analysis process is a set of system models that present an abstract description of the system to develop. Method based approaches system models are based on computational concept such as object or function rather than application domain concept. They are therefore an important bridge between analysis and designing process. A system model is an abstraction of the system being studied.

There is a general perception that anyone system model is a perfect system model for the system, but this thinking is wrong sometime. According to us, every system model views the system from a different model. Thus every system model is necessary for the detailed and full understanding of the system.

Here we will discuss two types of system model to make better of the system. The two types of system model

1. Data flow model

2. Semantic data model

Data flow model:

Data flow model are an intuitive way of showing how data is processed by a system. Data flow model, here is used to model the way data is processed in the existing system. It shows how data flows through a sequence of processing steps.

 Fig. 5: Data Flow Model
Semantic data models:

An important part of system modelling is to define the logical form of the data processed by the system one way of the defining the logical form of the data is to use a relational model. Using the relational model, the logical data structure is specified as a set of tables with some table shaving the common keys

Semantic data model s show the entity relationship diagram (ER diagram).in this model the system will be viewed as a collection of different entities connected with different relationships.

SYSTEM DESIGN

Analysis focuses on understanding the problem, whereas design focuses on how to solve the problem. Design is the process of taking the requirements and generating a solution that can be developed in software.

The result of the design process is a design document. A design document defines three key points for the solution.

i. The static class design

ii. The dynamic class design

iii. The architectural mechanism design

The static class design defines the classes, their methods and properties. The dynamic class design defines the interactivity between classes. The architectural mechanism design defines the object persistence of the system and how it will be distributed.

Now coming out of the theoretical definitions of analysis, I will take something about what practically I have done. I have divided the designing phase into two major parts

i. Embedding Program designing.

ii. Retrieval Program Designing

iii. Display program designing

First thing that came to my mind while designing was to design the algorithm and hence the program for embedding and retrieving program designing. The most important thing about our project designing was a successful designing of the first two of the above shown designs.

Here we will study the design of each individual program related to design phase. We will broadly divide the program into three categories. These three categories are listed below:

· Embedding Program designing.

· Retrieval Program Designing

· Display program designing

TESTING

Testing involves operation of a system or application under controlled conditions and evaluating the results (e.g., 'if the user is in interface A of the application while using hardware B, and does C, then D should happen'). The controlled conditions should include both normal and abnormal conditions. Testing should intentionally attempt to make things go wrong to determine if things happen when they shouldn't or things don't happen when they should. It is oriented to 'detection'. Organizations vary considerably in how they assign responsibility for testing. Sometimes they're the combined responsibility of one group or individual. Also common are project teams that include a mix of testers and developers who work closely together, with overall processes monitored by project managers. It will depend on what best fits an organization's size and business structure.

Software testing is a process used to help identify the correctness, completeness and quality of developed computer software. With that in mind, testing can never completely establish the correctness of computer software. Only the process of formal verification can prove that there are no defects.

There are many approaches to software testing, but effective testing of complex products is essentially a process of investigation, not merely a matter of creating and following rote procedure. One definition of testing is "the process of questioning a product in order to evaluate it," where the "questions" are things the tester tries to do with the product, and the product answers with its behavior in reaction to the probing of the tester. Although most of the intellectual processes of testing are nearly identical to that of review or inspection, the word testing is connoted to mean the dynamic analysis of the product-- putting the product through its paces.

The quality of the application can and normally does vary widely from system to system but some of the common quality attributes include reliability, stability, portability, maintainability and usability.

Why do softwares have bugs?
1) Miscommunication or no communication - as to specifics of what an application should or shouldn't do (the application's requirements).

2) Software complexity - the complexity of current software applications can be difficult to comprehend for anyone without experience in modern-day software development. Multi-tiered applications, client-server and distributed applications, data communications, enormous relational databases, and sheer size of applications have all contributed to the exponential growth in software/system complexity.

3) Programming errors - programmers, like anyone else, can make mistakes.

4) Changing requirements (whether documented or undocumented) - the end-user may not understand the effects of changes, or may understand and request them anyway - redesign, rescheduling of engineers, effects on other projects, work already completed that may have to be redone or thrown out, hardware requirements that may be affected, etc. If there are many minor changes or any major changes, known and unknown dependencies among parts of the project are likely to interact and cause problems, and the complexity of coordinating changes may result in errors. Enthusiasm of engineering staff may be affected. In some fast-changing business environments, continuously modified requirements may be a fact of life. In this case, management must understand the resulting risks, and QA and test engineers must adapt and plan for continuous extensive testing to keep the inevitable bugs from running out of control.

5) Time pressures - scheduling of software projects is difficult at best, often requiring a lot of guesswork. When deadlines loom and the crunch comes, mistakes will be made.

6) Poorly documented code - it's tough to maintain and modify code that is badly written or poorly documented; the result is bugs. In many organizations management provides no incentive for programmers to document their code or write clear, understandable, maintainable code. In fact, it's usually the opposite: they get points mostly for quickly turning out code, and there's job security if nobody else can understand it ('if it was hard to write, it should be hard to read').

7) Software development tools - visual tools, class libraries, compilers, scripting tools, etc. often introduce their own bugs or are poorly documented, resulting in added bugs.

What kinds of testing were considered?
1) Black box testing - not based on any knowledge of internal design or code. Tests are based on requirements and functionality.

2) White box testing - based on knowledge of the internal logic of an application's code. Tests are based on coverage of code statements, branches, paths, conditions.

3) Functional testing - black-box type testing geared to functional requirements of an application; this type of testing should be done by testers. This doesn't mean that the programmers shouldn't check that their code works before releasing it (which of course applies to any stage of testing.)

4) System testing - black-box type testing that is based on overall requirements specifications; covers all combined parts of a system.

5) Regression testing - re-testing after fixes or modifications of the software or its environment. It can be difficult to determine how much re-testing is needed, especially near the end of the development cycle. Automated testing tools can be especially useful for this type of testing.

6) Acceptance testing - final testing based on specifications of the end-user or customer, or based on use by end-users/customers over some limited period of time.

7) Security testing - testing how well the system protects against unauthorized internal or external access, willful damage, etc; may require sophisticated testing techniques.

8) Alpha testing - testing of an application when development is nearing completion; minor design changes may still be made as a result of such testing. Typically done by end-users or others, not by programmers or testers.

9) Beta testing - testing when development and testing are essentially completed and final bugs and problems need to be found before final release. Typically done by end-users or others, not by programmers or testers.

10) Mutation testing - a method for determining if a set of test data or test cases is useful, by deliberately introducing various code changes ('bugs') and retesting with the original test data/cases to determine if the 'bugs' are detected. Proper implementation requires large computational resources.

CONCLUSION

In the training phase of 45 days we can learn how the setup of the organization we are in working is, what is the work procedure .what are the technical know-how’s, what are the tools they prefer to use and what are the market strategies they implement. Being in a secure and restricted environment like DRDO, it becomes important to work in a disciplined, planned and an organized manner. Moreover working under the strict disciplinarian workers gave me an idea of how important it is to work under an organization with punctuality, discipline and hard work. The idea of working, the methodology and the concepts we worked on were unique and different. I won’t say that the working methodology is altogether different from the other organization but the security measures they impose are really proving their worth of their work in the respective fields.

My personal experience of working over there was a unique one. There I learnt many new things. The project I worked upon was based on one of the burning issues today in the present I.T. industry. Steganography is believed to have a great history and the supposed comeback of stego-programming after the 9/11 issue has given me a golden chance to work upon a nascent, new, upcoming technology.Steganography resurfaced into the public's awareness a few months ago when USA Today published a sensationalist story claiming that terrorists were using the Internet to distribute secret messages hidden in pornographic images. While no actual proof has ever been uncovered that members of Al Qaeda really did use this method, what raises hairs among the intelligence community is that they could have, and that it could be very hard to intercept and decode those messages. But now the jinni of steganography is out of its bottle and all over the Internet. It could even be lurking in GIS data

The mere thought of working on such a subject can give someone a wave of excitement. It was surely an amazing experience working on a subject like Steganography and I thoroughly enjoyed the training schedule.
FURTHER PROSPECTS
A Training period of 45 days is good enough to understand things well but surely to make a complete full-proof project time required is more then this time period. In my project I have used the host image as a .bsq file and to hide data in the file I have used the .txt file.

As a designer I view this project as a purely GUI based application which is able to accept almost all the image file formats as the host image file (i.e. the .bmp file, the .jpeg or .jpg file, the .jfif file, the .tiff file, the .gif file format etc.) and almost all the data file formats as the secret data file (e.g. the .txt file, the .doc file, the .pdf file etc.). Thus the further improvements in this project could be the above idea. As far as the utility of this project is concerned it can be used for the security purposes as well as in the transmission of secret information as both the parts of the project are available to us.

BIBLIOGRAPHY

1.) Let us C – Yashwant Kanitkar.

2.) Concepts of C – Dennis Ritchie

3.) IEE JOURNAL-IEE Proceedings

 Paper on steganography by C.C.CHANG, J.C.CHUANG, Y.P.LAI. Entitled “HIDING DATA IN MULTITONE IMAGESFOR DATA COMMUNICATIONS”.

 4.) --Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C.

Process

Entry

Conflict

Resolution

Prioritization

Classification

Requirements Collection

Domain understanding

Requirements validation

Requirements definition and specification

Staganography

(Using LSB substitution method)

Modification in the image files using LSB substitution

Retrieval of the data from the modified image file

Display of the image and the data file

 Initial

 Version

Outline

Description

Final

Version

Intermediate

Version

Development

Specification

Validation

Fig. 4: Evolutionary Development

Fig: Data Flow Model

Re-Installation

Entry

Host file input

Resultant Stego -image

Main program

Secret data file input

Combined

Input of files

PAGE
41

