PREFACE

 Engineers are the makers of modern world. Twentieth century in engineering terms is nothing but the age of computer science. It is very necessary for a computer engineer to get acquainted with the process of networking especially on Linux operating system as per the today’s increasing demand of it.

 This report has been prepared by the student undergoing B.E. M.B.M. Engg. College Jodhpur (Raj.) J.N.V. University Jodhpur (Raj). The report contains the details of networking and their related tools used in it like different servers with their proper rpm’s.

 While working in Linux I have faced some problems and it was very difficult for me to handle. But still with my all great efforts I have tackled this all very carefully. I have completed this Linux operating system training.

ACKNOWLEDGMENT

 It is great happiness and privilege for me to present this training report on Sept. 25, 2005. I have completed this project under my summer training at SILICON UNIV, Jaipur. This is an essential requirement to take training as a student of B.E. four year degree course.

 I would like to express my gratitude towards all those people who have in various ways, helped in successful completion of my training.

 I am grateful to Mr. Ravinder Singh, Centre Manager, Silicon Univ, for giving me an opportunity to work in this institute as a trainee and for extending his full support to me and for giving me a golden opportunity to work on Linux operating system with the help of networking.

 I am also grateful to Mr. Piyush Yaduvanshi, Silicon Univ, for his valuable suggestions and continuous monitoring.

 I like to be thankful to my colleagues and other team members for providing their invaluable support and cooperation during my training.

 Avdesh Pratap Singh

 B.E. III Year (C.S.E.)

INDEX

01. PREFACE

02. ACKNOWLEDGMENT

03. COMPANY PROFILE

04. INTRODUCTION TO LINUX

05. SALIENT FEATURES OF LINUX

06. LINUX INSTALLATION

07. BASIC ARCHITECTURE OF LINUX FILE

 SYSTEM

08. MANAGING FILES & DIRECTORIES

09. MANAGING A USER ACCOUNT

10. LINUX NETWORKING

11. NETWORK DESIGNING &

 IMPLEMENTATION (LOCAL AREA

 NETWORK)

12. NETWORK SETUP FOR ISP USING LINUX

 AS OS

13. FTP,TELNET,NFS SERVERS

14. SERVER CONFIGURATION

15. NETWORK SECURITY

16. BIBLIOGRAPHY

COMPANY PROFILE

[image: image1.png] [image: image2.png]
 SILICON UNIV is a new generation technology enterprise wholly dedicated to offering enterprise class , Cutting –edge linux base solutions for the Indian industry. Silicon univ is a privately held corporations.

 The Organization mission is to provide low cost solution and quality service to the customers.

 SILICON UNIV, the Company that revolutionized server centric computing technology, helps corporations and government organizations of achieve minimal total Cost Of Ownership(TCO), faster & greater return of investments(ROI) and down sizing IT infrastructure administration and management on existing as well as new IT infrastructure.

 SILICON UNIV Server centric computing solutions are usefull across all the major industrial domains notably small Medium and Large Enterprises, Government Institutions,Educational Institutions, Bank and related financial service providers, Enterprise software providers, Call Centres , ISP’s ,VPN’s , Info Tech Parks etc.
INTRODUCTION TO LINUX
 LINUX is an open source / free software. With its advanced server configuration, Red Hat is putting Linux as an operating system at the core of enterprise computing. Today Linux is found in Web infrastructure, file server, ERP, and point of sale system, increasingly in the systems running critical applications at large companies. Analysts predict that by the end of this decade Linux will be a common element in the enterprise computing landscape.

“Over the last year, we’ve seen Linux go from being focused on small and medium business to being used very deep in the enterprise”, says Paul Cormier, executive vice president of engineering at Red Hat, a leading Linux platform provider.

Basic Features of LINUX OS

There are lots of clones of Linux, no matter what version of Linux you use; the piece of code common to all is the Linux Kernel. Although the kernel can be modified to include support for the features you want, every Linux kernel can offer the following features:-

· Multi-user

· Multitasking & enhanced Symmetric Multiprocessing

· Graphical User Interface (KDE, GNOME)

· Hardware support (RAM up to 4GB, 10 IDE controllers, 16 NICs, USB)

· Networking connectivity (IPX/SPX, TCP/IP, X.25, …)

· Security (Local & Remote)

· Network servers (F/P, HTTP, SMTP, IMAP, POP3, DHCP, DNS, FTP, …)

· Applications support

· Software packaging (RPM)

· Easy Installation & Administration

· Reliable & Robust(Stable and fault tolerance)

Salient Features of LINUX

· Linux is the fastest operating system in the world. It runs much faster than Windows 9X/NT. It is about 1.2 to 3 times faster than Windows 9X/NT. In command-line console mode without X-window it runs even faster (console mode is ideal for Database servers, Apache Web servers, Email servers, News servers, File servers, DNS servers, Print servers, Network Computer servers, etc..). Linux is also the most powerful yet most simple and easy to use operating system in the world.

· Linux is the most reliable OS. Windows 9X/NT fails the CRASH_OS_TEST programs and only Linux passes. Also commercial Unix's like IRIX, Solaris, HPUX, AIX, SCO all fail the crash test and Linux is the only OS which passes the crash me test. Very often Windows 95 users will get GPF errors and the system freezes. Linux is very robust because it is built by millions of people on internet and there are no errors in the kernel. It runs for one full year without any re-boots or any problems non-stop, guaranteed. It is the best designed OS.

· Linux has an excellent scalability - it runs on Uni-processor, Multi-processors, Parallel Processors and even Super-computers. It fully supports SMP (Symmetric Multi-Processing) boxes with more than one CPU. Windows 95 supports only one CPU box. Linux scales much better than NT on SMP.

· Linux is fully 32-bit & 64-bit operating system. And it is very modular and is already ported to 64-bit chips like DEC alpha, Sun Micro system UltraSparc, Intel IA64, Motorola Power PC, Transmeta Corp Crusoe chip and GNU/GPL Freedom 64-bit CPU. Whereas Windows95 has a major chunks of 16-bit code in its kernel and MS Windows runs only on one type of chip - "Intel chip".

· Linux is a very secure OS. Windows 95 is not a secure OS, break-ins are easy. Windows 95/2000, NT, MSDOS have computer viruses. But Linux does not have any viruses. Computer viruses causes lot of damages to Windows 95/2000/NT but not to Linux.

· Linux is very mature and is one of the oldest operating system in the world. UNIX (which is another name for Linux) was born in AT&T Bell Labs 27 years ago for Telecom research. Linux(Unix) is the end-result of 27 years of research and development effort by U.S/European Universities and mega-corporations of Europe / America. It took 27 years to create vast amount of Unix information, and all that info is now just sitting inside this Linux cdrom on our hand. For example programs like 'grep' had not changed for the past 27 years and they are still used in Linux. Functionality and command line options of grep had not changed for the past 27 years. Linus started the Linux during 1991, but he borrowed lot of concepts, code from Unix and this means Linux is 27 years old. Today Linux is the OCEAN wherein all other UNIX(s) like Solaris, HPUX, AIX merge into. And in near future all other UNIX(s) will be replaced by Linux.

· Linux is less demanding on system resources. Linux runs on 386 PC with as little as 2 MB RAM in command-line console mode. Windows 95/NT cannot because the graphic engine is included in the kernel, which makes Windows 95/NT a resource hog. Graphic engine makes the Windows 95/NT extremely unreliable and unpredictable. Linux can do everything that Windows 95/NT does but Windows 95/NT cannot do everything which Linux does. In Windows 95/NT there is no option for the user to run in command-line console mode without any graphics. Unlike Windows 95, X-window can run with a very minimum resources, it runs on 486 box with just 8MB of RAM.

· Linux uses X-window which is a advanced network-windowing system, whereas Windows 95/NT is a standalone single-workstation windowing system. For example, using X-window, users can display output on any workstation-monitor attached anywhere in the network. There is a command called "xhost" in Linux and display environment variable, export display=`hostname`:0.0. Like this there are lot of functionalities in X-window which are missing in Windows NT/95. X-Window is an industry standard which was developed in MIT and is a very powerful network windowing system. With X-window you can run programs on super-computers and display on your Linux desktop locally. Even though X-window is network-resource intensive, it is becoming increasingly popular because of the availability of very low cost, high speed networking like 1 Gig bit Ethernet cards, 100 Megabit Ethernet cards, DSL lines, Cable-Modems, Frame-relay and ATM networks.

· Linux has very low total_cost_of_ownership since Linux supports diskless nodes. Cost of maintaining Linux is five times lower than MS Windows.

· Linux supports remote system administration whereas Windows NT/95 does not. We can remote login and do many system administration tasks, for example like adding users, reboot a Linux server from a remote terminal hundreds of miles.

· Linux runs most windows applications (16bit) like MSOffice, MSWord using WABI ($40), WINE(free) and MSDOS applications using DOSemu, FreeDOS, Dr.DOS. But Windows95/NT will run only few of Unix and Linux applications.

· Linux supports su (super user) command. Using su command it is possible to switch user without logging off. For example 'su - root' will login as user 'root'. In Windows NT/95 you must log off completely to switch user. Linux has remote commands like 'rlogin', telnet, etc.. while Windows NT/95 does
not have.

· Linux kernel is very small and it can fit on a single floppy. It is less complex but very sophisticated and powerful. Small kernel means it is very reliable. Linux applications are much bigger running on top of the Linux Kernel.

· Linux has many powerful desktops like KDE desktop, GNOME, Triteal CDE, Motif mwm, Openlook olwm, twm, fvwm 95, xdm, xsm, Windows Afterstep, Windowmaker (NeXTstep-lookalike), Qvwm, amiwm (amiga), mlvwm (mac) etc. KDE desktop is much more user friendly than Windows95 ! You have more freedom and choice in Linux desktops as compared to Windows 9X/NT.

· Linux OS needs only 50 MB of disk space for installation. Linux supports dual boot on the PCs – that is, you can have Windows95/NT on one partition and Linux on other. During system startup user can select to load Linux or Windows 95 and vice versa. Nowadays PCs are shipped with 6 Gigs of disk space.

· Linux runs on many hardware platforms - Intel, Motorola, PowerPC, RISC, DEC Alpha, MIPS, ARM, Transmeta Crusoe, Sparc architectures and GNU Freedom-64-bit CPU. Linux is already ported to 1024 CPUs super computer (Fujistu, Hitachi, Sun, Intel & others). Intel corporation had built the world's fastest super-computer with 10240 Intel Pentium CPU’s (more than ten thousand CPU’s) which is based on a system similar to Linux.

· Linux is 100% POSIX compliant OS, whereas Windows NT/9X are not. POSIX is IEEE (Institute of Electrical Engg) standard as well as ANSI and international ISO standard spec . U.S. govt generally require full compliance of POSIX on any operating system. Most of the Unix's like Solaris, HPUX, AIX, SCO are 100% POSIX.

· We can get the complete source code for Linux OS and all of it's applications, whereas Windows 9X/NT is proprietary and we get only the binaries. Having the source code of Linux is vital for companies because they can quickly add advanced features and share it with every other company in the world.

· Linux is free of any cost. Downside of Windows 9X/ NT is that we need to pay $200 (US dollars) per seat for Windows 95 and $800 (US dollars) per seat for Windows NT. And Microsoft applications like MS Office, C++ compilers and others will cost further $400,000 US dollars. It is better to spend money on hardware and use Linux as the software.

· Linux is trouble free and we will not have any problems with Linux, whereas you will have more headaches with Windows 95/NT (MS is not as reliable as Linux).

· Linux more than 900 software packages on CDROM and many more are being developed world-wide. All the software packages are in a single Linux CDROM.

· Linux was awarded “The best Network Operating system 1997/98/99/2000 ”, by any Computer magazine’s (US InfoWorld, European publications).

· The movie Titanic was created using Linux on Digital Alpha. Linux was used to create computer graphics, animations of all the shots in the movie Titanic.

· Linux was also used for storing data from experiments in the space shuttle. Linux was orbiting the earth in space.

Advantages of Linux :-

	· Virus proof
	· Advanced OS
	· Crash proof

	· Economical
	· Secured
	· User friendly GUI

	· Multi-user
	· Multi-tasking
	· Multi-desktop

	· Powerful networking
	· Variety of servers
	

 Who are using Linux :-

	 Private sector
	 Government sector

	· Raymond’s
	· Air-India

	· ICICI
	· Central Excise

	· IDBI
	· Govt. of MP

	· Bombay Dyeing
	· Govt. of Goa

	· Asian Paints
	· Govt. of Kerala

	· Bharat petroleum
	· Govt. of A P etc.

	· Reliance
	· Railways

 Partitions

The MBR, boot sectors and partition table

The information about how a hard disk has been partitioned is stored in its first sector (that is, the first sector of the first track on the first disk surface). The first sector is the master boot record (MBR) of thedisk; this is the sector that the BIOS reads in and starts when the machine is first booted. The master bootrecord contains a small program that reads the partition table, checks which partition is active (that is, marked bootable), and reads the first sector of that partition, the partition’s boot sector (the MBR is also a boot sector, but it has a special status and therefore a special name). This boot sector contains another small program that reads the first part of the operating system stored on that partition (assuming it is bootable), and then starts it.

The partitioning scheme is not built into the hardware, or even into the BIOS. It is only a convention that many operating systems follow. Not all operating systems do follow it, but they are the exceptions. Some operating systems support partitions, but they occupy one partition on the hard disk, and use their internal partitioning method within that partition. The latter type exists peacefully with other operating systems (including Linux), and does not require any special measures, but an operating system that doesn’t support partitions cannot co-exist on the same disk with any other operating system.

As a safety precaution, it is a good idea to write down the partition table on a piece of paper, so that if it ever corrupts you don’t have to lose all your files. (A bad partition table can be fixed with fdisk).

The relevant information is given by the fdisk -l command:

$ fdisk -l /dev/hda

Disk /dev/hda: 15 heads, 57 sectors, 790 cylinders

Units = cylinders of 855 * 512 bytes

Device Boot Begin Start End Blocks Id System

/dev/hda1 1 1 24 10231+ 82 Linux swap

/dev/hda2 25 25 48 10260 83 Linux native

/dev/hda3 49 49 408 153900 83 Linux native

/dev/hda4 409 409 790 163305 5 Extended

/dev/hda5 409 409 744 143611+ 83 Linux native

/dev/hda6 745 745 790 19636+ 83 Linux native

$

Extended and logical partitions

The original partitioning scheme for PC hard disks allowed only four partitions. This quickly turned out to be too little in real life, partly because some people want more than four operating systems (Linux, MS-DOS, OS/2, Minix, FreeBSD, NetBSD, or Windows/NT, to name a few), but primarily because sometimes it is a good idea to have several partitions for one operating system. For example, swap space is usually best put in its own partition for Linux instead of in the main Linux partition for reasons of speed.

To overcome this design problem, extended partitions were invented. This trick allows partitioning a primary partition into sub-partitions. The primary partition thus subdivided

is the extended partition; the subpartitions are logical partitions. They behave like primary 6 partitions, but are created differently. There is no speed difference between them.

The partition structure of a hard disk might look like that in Figure. The disk is divided into three primary partitions, the second of which is divided into two logical partitions. Part of the disk is not partitioned at all. The disk as a whole and each primary partition has a boot sector.

Partition types

The partition tables (the one in the MBR, and the ones for extended partitions) contain one byte per partition that identifies the type of that partition. This attempts to identify the operating system that uses the partition, or what it uses it for. The purpose is to make it possible to avoid having two operating systems accidentally using the same partition.

 However, in reality, operating systems do not really care about the partition type byte; e.g., Linux doesn’t care at all what it is. Worse, some of them use it incorrectly; e.g., at least some versions of DR-DOS ignore the most significant bit of the byte, while others don’t.

There is no standardization agency to specify what each byte value means.The same list is available in the Linux fdisk program.

Partitioning a hard disk

There are many programs for creating and removing partitions. Most operating systems have their own, and it can be a good idea to use each operating system’s own, just in case it does something unusual that the others can’t. Many of the programs are called fdisk, including the Linux one, or variations thereof.

Details on using the Linux fdisk are given on its man page. The cfdisk command is similar to fdisk, but has a nicer (full screen) user interface.

When using IDE disks, the boot partition (the partition with the bootable kernel image files) must be completely within the first 1024 cylinders. This is because the disk is used via the BIOS during boot (before the system goes into protected mode), and BIOS can’t handle more than 1024 cylinders. It is sometimes possible to use a boot partition that is only partly within the first 1024 cylinders. This works as long as all the files that are read with the BIOS are within the first 1024 cylinders. Since this is difficult to arrange, it is a very bad idea to do it; you never know when a kernel update or disk defragmentation will result in an unbootable system. Therefore, make sure your boot partition is completely within the first 1024 cylinders.

Some newer versions of the BIOS and IDE disks can, in fact, handle disks with more than 1024 cylinders. If you have such a system, you can forget about the problem; if you aren’t quite sure of it, put it within the first 1024 cylinders.

Each partition should have an even number of sectors, since the Linux filesystems use a 1 kilobyte block size, i.e., two sectors. An odd number of sectors will result in the last sector being unused. This won’t result in any problems, but it is ugly, and some versions of fdisk will warn about it.

Changing a partition’s size usually requires first backing up everything you want to save from that partition (preferably the whole disk, just in case), deleting the partition, creating new partition, then restoring everything to the new partition. If the partition is growing, you may need to adjust the sizes (and backup and restore) of the adjoining partitions as well.

Since changing partition sizes is painful, it is preferable to get the partitions right the first time, or have an effective and easy to use backup system. If you’re installing from a media that does not require much human intervention (say, from CD-ROM, as opposed to floppies), it is often easy to play with different configuration at first. Since you don’t already have data to back up, it is not so painful to modify partition sizes several times.

There is a program for MS-DOS, called fips, which resizes an MS-DOS partition without requiring the backup and restore, but for other filesystems it is still necessary.

Device files and partitions

Each partition and extended partition has its own device file. The naming convention for these files is that a partition’s number is appended after the name of the whole disk, with the convention that 1-4 are primary partitions (regardless of how many primary partitions there are) and 5-8 are logical partitions (regardless of within which primary partition they reside). For example, /dev/hda1 is the first primary partition on the first IDE hard disk, and /dev/sdb7 is the third extended partition on the second SCSI hard disk.

 Filesystems

What are filesystems?

A filesystem is the methods and data structures that an operating system uses to keep track of files on a disk or partition; that is, the way the files are organized on the disk. The word is also used to refer to a partition or disk that is used to store the files or the type of the filesystem. Thus, one might say “I have two filesystems” meaning one has two partitions on which one stores files, or that one is using the “extended filesystem”, meaning the type of the filesystem.

The difference between a disk or partition and the filesystem it contains is important. A few programs (including, reasonably enough, programs that create filesystems) operate directly on the raw sectors of a disk or partition; if there is an existing file system there it will be destroyed or seriously corrupted. Most programs operate on a filesystem, and therefore won’t work on a partition that doesn’t contain one (or that contains one of the wrong type).

Before a partition or disk can be used as a filesystem, it needs to be initialized, and the bookkeeping data structures need to be written to the disk. This process is called making a filesystem.

Most UNIX filesystem types have a similar general structure, although the exact details vary quite a bit.

The central concepts are superblock, inode, data block, directory block, and indirection block. The superblock contains information about the filesystem as a whole, such as its size (the exact information here depends on the filesystem). An inode contains all information about a file, except its name. The name is stored in the directory, together with the number of the inode. A directory entry consists of a filename and the number of the inode which represents the file. The inode contains the numbers of several data blocks, which are used to store the data in the file. There is space only for a few data block numbers in the inode, however, and if more are needed, more space for pointers to the data blocks is allocated dynamically. These dynamically allocated blocks are indirect blocks; the name indicates that in order to find the data block, one has to find its number in the indirect block first.

UNIX filesystems usually allow one to create a hole in a file (this is done with lseek; check the manual page), which means that the filesystem just pretends that at a particular place in the file there is just zero bytes, but no actual disk sectors are reserved for that place in the file (this means that the file will use a bit less disk space). This happens especially often for small binaries, Linux shared libraries, some databases, and a few other special cases. (Holes are implemented by storing a special value as the address of the data block in the indirect block or inode. This special address means that no data block is allocated for that part of the file, ergo, there is a hole in the file.)

Holes are moderately useful. On the author’s system, a simple measurement showed a potential for about 4 MB of savings through holes of about 200 MB total used disk space. That system, however, contains relatively few programs and no database files.

Filesystems galore

Linux supports several types of filesystems. As of this writing the most important ones are:

minix

The oldest, presumed to be the most reliable, but quite limited in features (some time stamps are missing, at most 30 character filenames) and restricted in capabilities (at most 64 MB per filesystem).

xia

A modified version of the minix filesystem that lifts the limits on the filenames and filesystem sizes, but does not otherwise introduce new features. It is not very popular, but is reported to work very well.

ext2

The most featureful of the native Linux filesystems, currently also the most popular one. It is designed to be easily upwards compatible, so that new versions of the filesystem code do not require re-making the existing filesystems.

ext

An older version of ext2 that wasn’t upwards compatible. It is hardly ever used in new installations any more, and most people have converted to ext2.

In addition, support for several foreign filesystem exists, to make it easier to exchange files with other operating systems. These foreign filesystems work just like native ones, except that they may be lacking in some usual UNIX features, or have curious limitations, or other oddities.

msdos

Compatibility with MS-DOS (and OS/2 and Windows NT) FAT filesystems.

usmdos

Extends the msdos filesystem driver under Linux to get long filenames, owners, permissions, links, and device files. This allows a normal msdos filesystem to be used as if it were a Linux one, thus removing the need for a separate partition for Linux.

iso9660

The standard CD-ROM filesystem; the popular Rock Ridge extension to the CD-ROM standard that allows longer file names is supported automatically.

nfs

A networked filesystem that allows sharing a filesystem between many computers to allow easy access to the files from all of them.

hpfs

The OS/2 filesystem.

sysv

SystemV/386, Coherent, and Xenix filesystems.

The choice of filesystem to use depends on the situation. If compatibility or other reasons make one of the non-native filesystems necessary, then that one must be used. If one can choose freely, then it is probably wisest to use ext2, since it has all the features but does not suffer from lack of performance.

There is also the proc filesystem, usually accessible as the /proc directory, which is not really a filesystem at all, even though it looks like one. The proc filesystem makes it easy to access certain kernel data structures, such as the process list (hence the name). It makes these data structures look like a filesystem, and that filesystem can be manipulated with all the usual file tools. For example, to get a listing of all processes one might use the command

$ ls -l /proc

total 0

dr-xr-xr-x 4 root root 0 Jan 31 20:37 1

dr-xr-xr-x 4 liw users 0 Jan 31 20:37 63

dr-xr-xr-x 4 liw users 0 Jan 31 20:37 94

dr-xr-xr-x 4 liw users 0 Jan 31 20:37 95

dr-xr-xr-x 4 root users 0 Jan 31 20:37 98

dr-xr-xr-x 4 liw users 0 Jan 31 20:37 99

-r-r-r- 1 root root 0 Jan 31 20:37 devices

-r-r-r- 1 root root 0 Jan 31 20:37 dma

-r-r-r- 1 root root 0 Jan 31 20:37 filesystems

-r-r-r- 1 root root 0 Jan 31 20:37 interrupts

-r----- 1 root root 8654848 Jan 31 20:37 kcore

-r-r-r- 1 root root 0 Jan 31 11:50 kmsg

-r-r-r- 1 root root 0 Jan 31 20:37 ksyms

-r-r-r- 1 root root 0 Jan 31 11:51 loadavg

-r-r-r- 1 root root 0 Jan 31 20:37 meminfo

-r-r-r- 1 root root 0 Jan 31 20:37 modules

dr-xr-xr-x 2 root root 0 Jan 31 20:37 net

dr-xr-xr-x 4 root root 0 Jan 31 20:37 self

-r-r-r- 1 root root 0 Jan 31 20:37 stat

-r-r-r- 1 root root 0 Jan 31 20:37 uptime

-r-r-r- 1 root root 0 Jan 31 20:37 version

$

(There will be a few extra files that don’t correspond to processes, though. The above example has been shortened.)

Note that even though it is called a filesystem, no part of the proc filesystem touches any disk. It exists only in the kernel’s imagination. Whenever anyone tries to look at any part of the proc filesystem, the kernel makes it look as if the part existed somewhere, even though it doesn’t. So, even though there is a multi-megabyte /proc/kcore file, it doesn’t take any disk space.

Which filesystem should be used?

There is usually little point in using many different filesystems. Currently, ext2fs is the most popular one, and it is probably the wisest choice. Depending on the overhead for bookkeeping structures, speed, (perceived) reliability, compatibility, and various other reasons, it may be advisable to use another file system. This needs to be decided on a case-by-case basis.

Creating a filesystem

Filesystems are created, i.e., initialized, with the mkfs command. There is actually a separate program for each filesystem type. mkfs is just a front end that runs the appropriate program depending on the desired filesystem type. The type is selected with the -t fstype option.

The programs called by mkfs have slightly different command line interfaces. The common and most important options are summarized below; see the manual pages for more.

-t fstype

Select the type of the filesystem.

-c

Search for bad blocks and initialize the bad block list accordingly.

-l filename

Read the initial bad block list from the name file.

To create an ext2 filesystem on a floppy, one would give the following commands:

$ fdformat -n /dev/fd0H1440

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.

Formatting ... done

$ badblocks /dev/fd0H1440 1440 $>$ bad-blocks

$ mkfs -t ext2 -l bad-blocks /dev/fd0H1440

mke2fs 0.5a, 5-Apr-94 for EXT2 FS 0.5, 94/03/10

360 inodes, 1440 blocks

72 blocks (5.00%) reserved for the super user

First data block=1

Block size=1024 (log=0)

Fragment size=1024 (log=0)

1 block group

8192 blocks per group, 8192 fragments per group

360 inodes per group

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

$

First, the floppy was formatted (the -n option prevents validation, i.e., bad block checking). Then bad blocks were searched with badblocks, with the output redirected to a file, bad-blocks. Finally, the filesystem was created, with the bad block list initialized by whatever badblocks found.

The -c option could have been used with mkfs instead of badblocks and a separate file. The example below does that.

$ mkfs -t ext2 -c /dev/fd0H1440

mke2fs 0.5a, 5-Apr-94 for EXT2 FS 0.5, 94/03/10

360 inodes, 1440 blocks

72 blocks (5.00%) reserved for the super user

First data block=1

Block size=1024 (log=0)

Fragment size=1024 (log=0)

1 block group

8192 blocks per group, 8192 fragments per group

360 inodes per group

Checking for bad blocks (read-only test): done

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

$

The -c option is more convenient than a separate use of badblocks, but badblocks is necessary for checking after the filesystem has been created.

The process to prepare filesystems on hard disks or partitions is the same as for floppies, except that the formatting isn’t needed.

LINUX INSTALLATION

Choosing computer hardware: - To install the PC version of Linux successfully, there are few things that the computer must have:

· x86 Processor (Intel compatible MP above 80386)

· RAM (at least 32MB, recommended 64MB)

· HDD (at least 900MB free space)

· FDD, CD-ROM drive or LAN connection

· Keyboard & Monitor

· Mouse (for X-Windows)

There are versions of Linux that run on Alpha & Sparc workstations, instead of just on PCs.

Choosing the Installation Type: - There are two installation types under Linux. They include the following:

· Partition less Installation (to the current version of Windows, slow)

· Kick start Installation (on a different partition, fast)

Beginning the Installation: - Throughout most of the installation procedure, you can click Back to make changes to earlier screens. However, once you are warned that packages are about to be written to hard disk, there’s no turning back. Most items that you configure can be changed after Linux is up & running.

· Insert the CD-ROM in the Drive

· Start your computer to boot from CD-ROM drive

· Start the boot procedure (boot: expert, text, rescue)

Press enter key to start installation GUI mode. To enter in text based installation type text and press enter.In text mode the installation is automatic.Choose expert mode to perform installation through commands.

· Choose a Language

· Choose a Keyboard (Model = Generic 101-key PC, Layout = US English, Dead Keys = Enable)

· Add a Mouse

· Continue Installation by choosing Install type (New or Upgrade, select New)

· Choose one of the types (Workstation, Server, Laptop, Custom system)

· Partition the hard disk (Automatic, Disk Druid, fdisk for experts)

· Create at least 1 Linux Native partition (as per your requirements) assigned to the root (/) file system & one swap partition (min. 64MB) for virtual memory.

· Choose partitions to format (Select only the root partition). Disable check for bad blocks option for faster formatting

· Configure LILO (Select Install LILO & store it at MBR if you want LILO to control the boot process for all the installed operating systems on the hard disk else install it on First sector of Boot partition if another boot loader is being used on your computer. Also, create a boot disk (recommended))

· Configuring Networking (Configure your LAN. Skip this section if you want to use DUN or your PC is not connected to LAN. Assign IP address (192.168.0.1), if no DHCP Server is available on the network, then add Net mask, Network, Broadcast, Hostname, Gateway, Primary DNS address for your network).

· Choose Language support (US English)

· Choose Firewall configuration (High, Medium, No Firewall are the options)

· Choose the time zone (Asia/ Calcutta)

· Configure Root password & other User Accounts (if any)

· Enable Authentication (Enable shadow Password & MD5 passwords)

· Select packages (as per your requirements. Everything requires around 2.4GB space)

· Configure the X-Window System (Specify the Video Card, Video Memory, Monitor, Colors & Resolution, Text or Graphical login, Workstation type – KDE or GNOME)

· Begin Installing (copying of packages to the Linux partition)

· Create a boot disk

· Finish Installation

Your computer will now restart. If you installed LILO, you will see a graphical LILO boot screen that displays information about bootable partitions. Select the OS to boot into by using the arrow keys & hit the enter key else the system may boot into the default OS as specified during installation.

Depending upon whether you set your computer to use graphical or text login, you will get any of the login screen.
System Shutdown

Shutting down the machine is simply a change in run level. The options available are:

· reboot (shutdown –r now)

· halt (shutdown –h now)

· poweroff

· shutdown [+min] [hh:mm] [now]

Basic architecture of Linux File system

The Red Hat Linux File system is the structure in which all the information on your computer is stored. Every physical & logical entity in Linux is represented as file in Linux file system. The physical entities include disks, printers, & terminals. Logical entities include directories & ordinary files that store documents & programs. Files are organized within a hierarchy of directories. Each directory can contain files, as well as other directories.

Understanding files & path name in Linux

Filename is a series of contiguous letters, numbers & certain special characters. They cannot contain spaces or any other character that is reserved for the shell like:

! @ # $ % ^ & * () { } ‘ “ / \ | ; < > `

Filename is limited to 14 characters on most of the UNIX implementations but Linux supports filenames up to 256 characters. It is recommended that in order to achieve portability, filenames should be restricted to 14 characters only.

 A path name can be any number of characters. In Linux, the highest directory is called the root directory & is symbolized by the slash character (/). This directory is simply referred to as root. An absolute pathname specifies exactly where in the file system you can find a file whereas a relative pathname points to a file relative to the current directory.

We can use the pwd command to find out which directory is the current directory. We can also check the contents of the $PWD environment variable by using command echo $PWD.

Like DOS, Linux also uses dot (.) to represent current directory & double dot (..) to represent parent directory.

Types of Files under Linux

There are just four basic types of files under Linux:

· Ordinary Files:-These are simple files that are used to store logically related information.

· Directory Files :-These are like ordinary files whose contents are the information about other files

· Links:-These are duplicate names for an existing file or directory so if any of the respective links are updated. (There is only one copy of the file)

· Special Files:-There are used to map physical devices or buffers like device files and block files.

File permissions under Linux

File permissions mean more in Linux than just what permissions you have on a file or directory. Although permissions determine who can read(r), write (w), or execute (x) a file, they also determine the file type & how the file is executed.

Linux supports 3 different attributes to implement permissions to access a file , they are,

(1).Read (r)

(2).Write (w)

(3)Execute(x)

Further these attributes are specified for three levels

i User level (owner)

ii Group level

iii Others

You can display the permissions in a file with the long form of the listing command, ls –l. The output looks like:

drwx------ 2 dummy accounts 122 Sep 29 15:37 letters

-rw-r----- 1 dummy accounts 32 Sep 20 10:30 resume

This listing shows virtually everything that can be known about a file from the directory entry. There are 7 columns for each entry which mean:

First Column

-
Type of file & permissions

Second Column
-
Number of links to the file

Third Column

-
Owner of the file

Fourth Column
-
Owners’ group

Fifth Column

-
File size in bytes

Sixth Column

-
Date & Time of creation

Seventh Column
-
File name itself

The permission field (first column) is broken into four subfields:

- rwx rwx rwx

The first subfield denoted the type of file. Options are:

· Normal File

b
Block-special File

c
Character-special File

d
Directory

l
Symbolic Link

The next three subfields show the read, write, and execute permissions of the file for owner, group & others. We can change permissions on any file by using chmod command. It uses two different syntaxes: absolute & relative. With absolute permissions, we define exactly what the permissions on a file will be using octal numbers as given below:

001
Execute

002
Write

004
Read

Relative permissions use a slightly different format. With relative permissions, we must state the following:

· Who are we giving permissions to (a, o, g, u)

· What operation we intend (+, -, =)

· What the permissions are (x, r, w)
Default file structure of Linux

Linux file structure looks like an upside down tree. At the top is the root directory, which is represented by a single slash (/). Below that is a set of common directories in the Linux system. Each of these directories, as well as directories added to root (by users), can contain sub-directories.

[image: image3]
· /bin
(contains common Linux commands like ls, sort, date, …)

It contains the basic utilities that are required to perform comman functions like file creation, copy, rename, delete… etc. These commands are publicly accessible to everyone.

There are certain commands which are exclusively used by system or network administrator to configure or customize and monitor the Linux OS. All these commands are restricted to administrator only and are not available for public access .These commands are stored in a different folder named sbin under the root directory.

· /dev
(contains files representing devices on system like tty*, fd*, hd*, cd*, …)

Linux treats all the physical hardware devices as if they are files. This basically implements device independence that is user well access a particular device using a file. Even if the device is changed with another device of different make and model, the user can still access it using the respective device file.

There is a device file for every physical device available on the system running Linux.

Example: serial port 1 can be accessed by the file /dev/ttyso1

 Parallel / LPT port can be accessed by the file /dev/lp01 or /dev/lpd01

· /etc
(contains administrative configuration files)

It is the most sensitive sub-directory that stores configuration and script files, associated with utilities and applications installed on Linux system.They are not publicly accessible (restricted access). These script files are generally plain text files and are readable they are not executable files.

· /home
(contains directories assigned to each user with a login account)

It contains home directories of all the user accounts having access to the linux system.

Home directory is a directory that is unique for every user and is the location where the user lands after successful login.

· /mnt
(provides a location for mounting devices like cdrom, floppy, …)

· /root
(represents the root user’s home directory)

This folder stores the most important component of Linux OS which is the Linux Kernel. It is named so because it is the home directory of the root user that has full access to the Linux system.

· /sbin
(contains administrative commands & daemon processes)

· /tmp
(contains temporary files used by applications)

· /usr
(contains user documentation, games, graphical files, libraries, …)

Managing Files & Directories

The vast majority of Linux commands manipulate files & directories. We can also use shell scripts for this purpose. File manipulations are easy from within a shell. This is largely because of the rich selection of file-manipulation commands available in Linux.

File-manipulation commands can be roughly grouped into two categories:

· Commands that manipulate files as objects

· Commands that manipulate the contents of the files

Be familiar with the commands and utilities in this table
	Command
	Usage
	Note

	man
	Get help
	The linux manual sections, man1 to man9, are in /usr/man directory.

	cd
	Move to a different directory
	Know what .. and ~ can do as parameters to the CD command.

	pwd
	Print working directory
	

	find
	Search directory for matching file
	-print switch; -xdev switch

	whereis
	Find files from files directories
	

	locate
	Locate files from locate’s database –locate
	Locate is in /var/lib directories

	updatedb
	Update locatedb database
	

	whatis
	Get command summaries
	

	makewhatis
	Build the whatis database (db of command summaries)
	Make whatis in /usr/sbin directory

	ls
	List files and directories
	Know the –m, -x, -F, -a, -l, -R, -d switches. Know how to use wildcard * and.

	dir, vdir
	List directories
	

	tree
	List graphic directory
	Know the –d option

	cat
	List, create,and combine files
	Know the –n, -l, *, >,>> options and pipes. Know Ctrl-D to close file.

	more
	Read files
	

	less
	Read files (allows scrolling, have more options than the more command)
	Use zless command to compress files

	head, tail
	Read the beginning and the end of files
	Know the –q option

	touch
	Creat files
	Know how to create a file and redirect output to a new file (use with Ls for example).

	rm
	Delete files
	Know the –r, -f, -I options and wildcards

	mkdir
	Create directories
	Know how to create multiple directories and create sub directories under existing directories.

	rmdir
	Removing directories
	-p option

	mv
	Rename files
	

	cp
	Copy files
	

	compress
	Compress files
	

	kill
	Terminate a process
	

	Ctrl-z
	Put arunning program into background in bash shell
	

	fg
	Bring back a program from background
	Return a specific program using job number or job name.

Example: fg %x (x = job number, or job name)

	mount, umount
	Mount and unmount a file system.
	

	gzip, gunzip
	Compress and uncompress files
	

Listing Files (ls)

The basic command to list files is ls. The behavior of the ls command is modified with the use of flags that take the form –abcd. Flags used with the ls command can be concatenated or listed separately. The commonly required flags used with ls & their uses are listed below:

· –a
lists all entries including hidden ones (filenames beginning from period are hidden)

· –A
same as –a except that . & .. are not listed

· –c
Uses time of last edit for sorting or printing

· –C
forces multicolumn output with entries sorted down the columns

· –d
if the argument is a directory, lists only its name & not its contents

· –F
marks directories with (/), executable files with (*), symbolic links with (@)

· –i
prints each file’s i-node number in the first column of report

· –l
lists in long format, giving mode, links, owner, size in bytes, modification time, …

· –n
lists user & group ID numbers instead of names

· –r
reverses the sort order

· –s
sorts by size of each file

· –t
sorts by time modified

· –u
sorts by access-time

· –x
forces multi-column output with entries sorted across the page (not down)

There are more options than these shown above, so consult the man pages for them. Also, by default, Linux also provide color descriptions for each file type, provided an appropriate monitor is available.

Copying Files (cp)

The command for copying files is the cp from to. You must have the read permission for the file you are copying from & write permission for the directory you are copying to. We can copy a list of files into a directory with the command cp file1 file2 file3 directory. If the last item in the list is not a directory, an error message appears.

Use –r (recursive) flag with copy to copy directories.

Moving & Renaming Files (mv)

In Linux, moving & renaming files are accomplished using the command mv. The syntax & rules are same as that of cp command. We can move as many as files using mv. The mv command, however, moves directories quite happily.

Syntax :- mv source destination

 mv oldname newname

Removing Files or Directories (rm)

The command to remove a file is rm. To delete a file we don’t own, we need both read & write permissions. We can delete all the files at once using rm * command. A better way to protect yourself from accidentally deleting file is to use the interactive (-i) flag. If we use this flag, then we will be asked whether we really want to delete that file.

To delete sub-directories, we must use the recursive option (-r). Files once deleted are gone forever & can never be recalled unless a backup is maintained.

Syntax: - rm <filename>

 rm <file1> <file2> <file3> ……

 rm *.*

 rm –r <directory name>

Viewing the Contents of a file (cat, more, less)
There are three standard commands we can use to view the contents of a file: cat, more, less.
For displaying short ASCII files, the simplest command is cat, which stands for concatenate. The cat command takes a list of files or a single file & prints the contents unaltered on the standard output, one file after another. Its primary purpose is to concatenate files, but it works just as well to send the contents of a short file to your screen. If we try to display large files using cat, the file scrolls past your screen as fast as screen can handle the character stream. One way to stop the flow of data is to alternatively press <ctrl+s> and <ctrl+q> to send start & stop messages to your screen, or you can use more or less commands.

Both more and less display one screen full of data at a time. Although both of them do the same thing but they do it differently. They determine how many lines your terminal can display from the terminal database & from the TERM environment variable. more is older than less & is derived from Berkley version of UNIX & like vi, it has become a standard.

The simplest form of more command is more filename. We can see a screen full of the file. Press the <spacebar> to go to next screen or <return> to display the next one line. We can also use e or v options to edit the current file which depend on the environment variables EDIT & VISUAL. If these variables are not defined then they defaults to ed & vi editor.

more command has only one drawback that we can’t go backward in a file & redisplay a previous screen. However, we can do this with less. One disadvantage to the less command is that we cannot use an editor on a file being displayed. But we can move forward & backward through a file using it.

The less command works almost the same way as more does. To page through a file, we use the command less filename. We use the <spacebar> to view the next screen & to view the previous screen. To go to a certain position expressed as a percentage of the file, press the <p> key of the <shift+5> key.

Both the less & more commands allow us to search for strings in the file being displayed. The search syntax is /string. With both of the commands, if a string is found, a new page is displayed with the line containing the matching string at the top of the screen. With less, pressing the <n> key repeats the previous search.

We can escape to the shell with the <!> command. When we use <!> command then we are actually in a sub-shell & we must exit it using <ctrl+d> or enter the exit command to return to the same screen in more or less. We can also use <q> command to exit back to shell before completing the display of the entire file.

Viewing Current Directory name (pwd)

We can use pwd command to view the name of the current directory we are working in.It is used to find out the current working directory name. It is very useful as in Linux by default the current is not displayed with the prompt.

Changing Directory (cd)

It is used to change the current working directory (cd dir-name). If no directory is specified then user is returned to its home directory.

Creating Directory (mkdir)

It is used to create sub-directories (mkdir dir-name) in the existing file system.

-m
sets the directory permissions to mode at the time of creation

Removing Directories (rmdir)

It is used to remove/ delete existing sub-directories (rmdir dir-name) of the file system. We can also use (rm –r dir-name) for this purpose.

Creating ASCII Files (cat > filename)

We can also use cat to create an ASCII file under Linux using (cat > filename). Use <ctrl+d> to save the contents to the specified file. We cannot change the contents of the file once created using cat. But we can append more data to it using (cat >> filename).

So how do you use cat to create a file? Simple! You redirect the output from cat to the desired filename:

darkstar:~$ cat > newfile

Hello world

Here's some text

You can type as much as you want. When you are finished, press ^D by itself on a line; you will be back at the Linux prompt.

Now you want to look at the contents of newfile. You could use the more or less commands, but instead, let's use cat. Yes, you can use cat to look at files simply by providing it with a filename:

darkstar:~$ cat newfile

Hello world

Here's some text

darkstar:~$

Neat! You can also add to the end of the file by using >>. Whenever you use >>, whether with cat or any other command, the output is always appended to the specified file. (Note that the ^D character does not appear on-screen. I show it in the examples for clarity.)

darkstar:~$ cat >> newfile

Some more lines

^D

darkstar:~$ cat newfile

Hello world

Here's some text

Some more lines

darkstar:~$

Mounting and unmounting

Before one can use a filesystem, it has to be mounted. The operating system then does various bookkeeping things to make sure that everything works. Since all files in UNIX are in a single directory tree, the mount operation will make it look like the contents of the new filesystem are the contents of an existing subdirectory in some already mounted filesystem.

For example, Figure 4-3 shows three separate filesystems, each with their own root directory. When the last two filesystems are mounted below /home and /usr, respectively, on the first filesystem, we can get a single directory tree, as in Figure 4-4.

Figure 4-3. Three separate filesystems.

liw bin lib

/ /

abc ftp etc bin dev home etc lib usr

/

Figure 4-4. /home and /usr have been mounted.

liw abc ftp bin lib etc

bin dev home etc lib usr

/

The mounts could be done as in the following example:

$ mount /dev/hda2 /home

$ mount /dev/hda3 /usr

$

The mount command takes two arguments. The first one is the device file corresponding to the disk or partition containing the filesystem. The second one is the directory below which it will be mounted.

After these commands the contents of the two filesystems look just like the contents of the /home and /usr directories, respectively. One would then say that “/dev/hda2 is mounted on /home”, and similarly for /usr. To look at either filesystem, one would look at the contents of the directory on which it has been mounted, just as if it were any other directory. Note the difference between the device file, /dev/hda2, and the mounted-on directory, /home. The device file gives access to the raw contents of

the disk, the mounted-on directory gives access to the files on the disk. The mounted-on directory is called the mount point

.

Linux supports many filesystem types. mount tries to guess the type of the filesystem. You can also use the -t fstype option to specify the type directly; this is sometimes necessary, since the heuristics mount uses do not always work. For example, to mount an MS-DOS floppy, you could use the following command:

$ mount -t msdos /dev/fd0 /floppy

$

The mounted-on directory need not be empty, although it must exist. Any files in it, however, will be inaccessible by name while the filesystem is mounted. (Any files that have already been opened will still be accessible. Files that have hard links from other directories can be accessed using those names.) There is no harm done with this, and it can even be useful. For instance, some people like to have /tmp and /var/tmp synonymous, and make /tmp be a symbolic link to /var/tmp. When the system is booted, before the /var filesystem is mounted, a /var/tmp directory residing on the root filesystem is used instead. When /var is mounted, it will make the /var/tmp directory on the root filesystem inaccessible. If /var/tmp didn’t exist on the root filesystem, it would be impossible to use temporary files before mounting /var.

If you don’t intend to write anything to the filesystem, use the -r switch for mount to do a readonly mount. This will make the kernel stop any attempts at writing to the filesystem, and will also stop the kernel from updating file access times in the inodes. Read-only mounts are necessary for unwritable media, e.g., CD-ROM’s.

The alert reader has already noticed a slight logistical problem. How is the first filesystem (called the root filesystem, because it contains the root directory) mounted, since it obviously can’t be mounted on another filesystem? Well, the answer is that it is done by magic. 7 The root filesystem is magically mounted at boot time, and one can rely on it to always be mounted. If the root filesystem can’t be mounted, the system does not boot. The name of the filesystem that is magically mounted as root is either compiled into the kernel, or set using LILO or rdev.

The root filesystem is usually first mounted readonly. The startup scripts will then run fsck to verify its validity, and if there are no problems, they will re-mount it so that writes will also be allowed. fsck must not be run on a mounted filesystem, since any changes to the filesystem while fsck is running will cause trouble. Since the root filesystem is mounted readonly while it is being checked, fsck can fix any

problems without worry, since the remount operation will flush any metadata that the filesystem keeps in memory.

On many systems there are other filesystems that should also be mounted automatically at boot time.

These are specified in the /etc/fstab file; see the fstab man page for details on the format. The details of exactly when the extra filesystems are mounted depend on many factors, and can be configured by each administrator if need be; see Chapter 6.

When a filesystem no longer needs to be mounted, it can be unmounted with umount. 8 umount takes one argument: either the device file or the mount point. For example, to unmount the directories of the previous example, one could use the commands

$ umount /dev/hda2

$ umount /usr

$

See the man page for further instructions on how to use the command. It is imperative that you always unmount a mounted floppy. Don’t just pop the floppy out of the drive! Because of disk caching, the data is not necessarily written to the floppy until you unmount it, so removing the floppy from the drive too early might cause the contents to become garbled. If you only read from the floppy, this is not very likely, but if you write, even accidentally, the result may be catastrophic.

Mounting and unmounting requires super user privileges, i.e., only root can do it. The reason for this is that if any user can mount a floppy on any directory, then it is rather easy to create a floppy with, say, a Trojan horse disguised as /bin/sh, or any other often used program. However, it is often necessary to allow users to use floppies, and there are several ways to do this:

• Give the users the root password. This is obviously bad security, but is the easiest solution. It works well if there is no need for security anyway, which is the case on many non-networked, personal systems.

• Use a program such as sudo to allow users to use mount. This is still bad security, but doesn’t directly give super user privileges to everyone. 9

• Make the users use mtools, a package for manipulating MS-DOS filesystems, without mounting them.

This works well if MS-DOS floppies are all that is needed, but is rather awkward otherwise.

• List the floppy devices and their allowable mount points together with the suitable options in /etc/fstab.

The last alternative can be implemented by adding a line like the following to the \fn{/etc/fstab} file:

/dev/fd0 /floppy msdos user,noauto 0 0

The columns are: device file to mount, directory to mount on, filesystem type, options, backup frequency (used by dump), and fsck pass number (to specify the order in which filesystems should be checked upon boot; 0 means no check).

The noauto option stops this mount to be done automatically when the system is started (i.e., it stops mount -a from mounting it). The user option allows any user to mount the filesystem, and, because of security reasons, disallows execution of programs (normal or setuid) and interpretation of device files from the mounted filesystem. After this, any user can mount a floppy with an msdos filesystem with the following command:

$ mount /floppy

$

The floppy can (and needs to, of course) be unmounted with the corresponding \cmd{umount} command.

If you want to provide access to several types of floppies, you need to give several mount points. The settings can be different for each mount point. For example, to give access to both MS-DOS and ext2 floppies, you could have the following to lines in /etc/fstab:

/dev/fd0 /dosfloppy msdos user,noauto 0 0

/dev/fd0 /ext2floppy ext2 user,noauto 0 0

For MS-DOS filesystems (not just floppies), you probably want to restrict access to it by using the uid, gid, and umask filesystem options, described in detail on the mount manual page. If you aren’t careful, mounting an MS-DOS filesystem gives everyone at least read access to the files in it, which is not a good idea.

Understanding Shells

After we log on, Linux places us in our home directory & runs a program called a Shell. A shell is really more than a program designed to accept commands from the user & execute them. Many kinds of programs can be used as shells, but there are several standard shells available with almost all versions of Linux.

Linux shells are equivalent to COMMAND.COM used by MS-DOS. Both accept & execute commands, run batch files & other programs.

One of the shells installed by Linux is BASH (bash) shell (Bourne Again Shell). Linux also provides a C Shell (csh), T Shell (tsh) and Z Shell (zch).

The shell is a program that starts after we log on & interprets our commands. Because it serves as a primary interface between the operating system & the user, many users identify the shell with Linux. Users expect shell to have common properties required by them & to be programmable. Remember that the shell is not a part of the Kernel of the operating system.

In the simplest form, the Bourne & Korn shell use the dollar sign ($) as their standard prompt; the C shell uses the percent sign (%) as the prompt. Fortunately, these prompts can be changed so that you may or may not see either the dollar or percent sign when you first log on.

The Bourne shell is the oldest one & other have some features that are not in the Bourne shell. In fact, Linux uses a variation of the Bourne shell, the BASH shell, as its default shell. Bourne & Korn shells look identical; indeed, the Korn shell grew out of Bourne shell. The Bourne shell, known as (sh), is the original UNIX shell. It was written by Steve Bourne with some help & ideas from John Mashey, both of AT&T Bell Laboratories. It is available on all LINUX systems. The executable program for this shell is in the file /bin/sh. This shell uses a $ sign to represent prompt.

The C Shell was developed by Bill Joy at the University of California at Berkeley as a shell more suitable for programmers than the Bourne shell. The executable program for this shell is in the file /bin/csh. When we use this shell, we usually see a % prompt. The syntax for this shell closely resembles the C programming language. This is one reason that shell scripts written for C shell often cannot run under the Bourne or Korn shell.

The Korn shell has all the features of the C Shell but uses the syntax of the Bourne shell. The executable program for this shell is in the file /bin/ksh.

The default Linux shell is the BASH shell. It is located in /bin/bash & provides several enhanced features such as command editing, history & command completion.

To determine which shell we are using, enter

echo $SHELL

The echo command prints whatever follows the word echo to the terminal window. SHELL is a variable, maintained by the shell, which holds the name of the current shell; $SHELL is the value of that variable.

The shell we use as a log on shell is specified in the password file. Each logon ID is represented by a record or line in that file. The last field in the shell specifies the logon shell. To change our shell, we can modify this field.

The shell also keeps track of a number of variables. We can see what they are with the env command, which lists the variables available to us within the working environment. Following is an abbreviated list of what we see when we enter env command at the prompt.

HOME=/usr/amit

(full pathname of the user’s home directory)

SHELL=/bin/bash

(name of the current shell)

MAIL=/usr/mail/amit

(full pathname of the user’s mail box)

LOGNAME=amit

(user’s log on name)

PATH=/bin:/usr/bin:.

(directories the shell searches for commands)

PS1=$

(system prompt)

TERM=vt100

(specifies the type of terminal)

Note : - The variable PS1 is manipulated to change the default prompt. Example :set PS1 = “Deepesh”

Finding out who’s on the system (who)

The purpose of the who command is to find out who’s logged onto the system. The who command lists the log on names, terminal lines, and log on times of users now logged on.

Several options are available with who but two options are frequently used to monitor processes on the system:

-u
Lists users who are now logged on

-H
Displays headers above each column

With these options, we can get more information about the users now logged on. The headers displayed with the –H option are NAME, LINE, TIME, IDLE, PID, and COMMENTS.

Terminating process (kill)

Sometimes, we want or need to terminate a process. Here are some reasons for stopping a process:

· It’s using too much CPU time

· It’s running too long without producing expected output

· It’s producing too much output on screen or to a disk file

· It appears to have locked a terminal or some other session

· It’s using wrong files for input or output because of an operator programming error

· It’s no longer useful

To stop a command that isn’t in the background, press <ctrl+c> or <ctrl+d>, depending on the type of shell we are using. When a command is in the background, however, processing an interrupt key doesn’t stop it. Because a background process isn’t under terminal control, keyboard input of any interrupt is ignored. The only way we can stop a background process is to use the kill command.

The kill command sends signals to the program to demand that a process be terminated or killed. To use kill, use either of these two forms:

kill PID(s)

kill –signal PID(s)

To kill a process whose PID is 123, enter kill 123. To kill several processes whose PIDs are 123, 342, and 73, enter kill 123 342 73.

By using the signal option, we can do more than simply kill a process. Other signals can cause a running process to reread configuration files or stop a process without killing it. Valid signals are listed in the /usr/include/sus/signal.h file. An average user, however, will probably use kill with no signal or, at most, with the -9 signal.

If we successfully kill the process, we get no notice from the shell-the shell prompt simply reappears. We see an error message if we try to kill a process we don’t have permissions to kill or if we try to kill a process that doesn’t exist.

Stopping the parent of a process sometimes terminates the child process as well. To be sure, stop parent & its children to halt all the activity associated with a parent process.

To kill all the background jobs, enter:

kill 0

This command terminates all the processes started by the current shell, it’s faster & less tedious way to terminate processes. Enter the jobs command to see what commands are running in the background for the current shell.

Suspending the execution of an interval of time (sleep)

We can suspend the execution for a particular amount of time interval using sleep command.

It is used in the following format:

sleep n
(where n is the time interval in seconds)

For example, To show date every 60 seconds, use:

do

date

sleep 60

done

Find

It is an extremely powerful tool. It traverses the specified directories generating a list of files that match the criteria specified. Files may be matched by name, size, creation time, modification time, and many more criteria. We can even execute a command on the matched files each time a file is found.

find dirlist match-spec

dirlist

a space separated list of directories where we want to look for a

 file(s)

match-spec
the matching specification or description of files we want to find

-name file
(tells find what file to search for)

-perm mode
(matches all files whose mode matches the numeric

 value)

-type x

(matches all files whose type, x, is b, d, l, s, f)

-links n

(matches all files with n number of links)

-size n

(matches all files of size n blocks)

-user user-id
(matches all files whose UID is user-id)

-atime n
(matches all files last accessed within the previous n

 days)

-mtime n
(matches all files modified within the previous n

 days)

-exec cmd
(for each file matched, the command cmd is

 executed)

-newer file
(matches all file that have been modified more

 recently than file)

The options may be grouped together and combined to limit the search criteria. Multiple flags are assumed to be ANDs, meaning that both criteria must be met. To offer more control over selection the following table describes other options:

()

parentheses may be used to group selections, used like \(

-o

this is OR operator, overriding the default AND assumption

!

this is NOT operator & negates the expression that follows it

The find command is very complex. There are several options that are not listed here.

Examples:

find . –name letter-to-dad –print

find . –name “letter*” –print

find . –name “letter*” –exec ls –l {} \;

find . !\(-name “letter*” –o –name “*dad” \) –print

Sort

It enables us to sort & merge text files. Sorts may be based on character fields or numeric fields, and multiple sort keys may be specified.

sort [options] files

files

an optional list of files to be sorted or merged

-c

checks to see if the files are sorted; if they are, no output is generated

-m

merges the specified files. It is assumed that the files are already sorted

-u

makes sure only unique lines go to the output

-o file

specifies the output file name

-d

sorts in descending order

-f

“folds” or changes lowercase letters to uppercase letters for sorting

-i

ignores non-printable characters in the sort keys

-M

treats sort key as if it was a month

-n

specifies a numeric key; implies the –b flag

-r

reverses the sort

-t field-sep
specifies the field separator is the character field-sep not tabs/blanks

-b

ignores leading blanks when determining the value of the sort keys

+keybeg
specifies that the sort key starts at field number keybeg. Fields start

counting at 0; the fifth field is 4

-keyend
specifies on what field number the key ends, and follows the same format rules

of +keybeg

Because sort distinguishes records by looking for the new-line character, the command is not suitable for binary files.

Examples:

ps –e | sort

ps –e | sort +3

ps –e | sort –u +3

ps –e | sort –r +2 -3

Managing a User account
· Creating an account

· Modifying an account

· Removing an account

· Viewing an account

The LINUX system administrator is responsible for managing users. It involves adding users so that they can logon to the system, setting user privileges, creating & assigning home directory, assigning groups & deleting user when it is necessary.

Adding a User

There are two ways to add the user to the LINUX system.

(i) < Adduser > command

(ii) < Useradd > command

< Adduser > when we add user with the < Adduser > command LINUX returns a set of prompts that ask for necessary information like login name, full name, GID, UID, home directory, default shell, password, remarks. The < Adduser > cmd also copies the files from the directory (skel) into the user home directory. These files include personal configurations files, e-mail configuration files, and environmental files.

< Useradd > we can also use < Useradd > cmd to create a user to the LINUX system. With this command we can specify all the information except the password required to create an account. The password is assigned by the enduser at 1st logon using < passwd > command. Like the <adduser>, <Useradd> command also copies the files form the < skel > directory into the user home directory. The flags are

-u used to specify the UID

-g used to specify GID

-c used for comments or remark

-d used to specify home directory

-s default shell

-k copy the files from the specified directory to the user home directory

E.g. useradd login-name –c"fullname”

Removing a user & viewing a user

All the users accounts information is stored in a special file called /etc/passwd. In order to view user a/c information we can simply open the “passwd” file in any text editor.

To remove an a/c or modify a/c properties, we can simply edit or remove the users record in the ‘passwd’ file.

Creating groups previewing/ modifying/ removing groups

All the groups information is stored in /etc/group file. It contains group name, group ID & user name that belong to that group.

To create a new group we can use <groupadd> command.

 Syntax groupadd –g Gid groupname

 e.g. groupadd –g 501 computers

To modify the properties of a group we can simply open the ‘group’ file & modify the required field for the respective group.

To remove a group we can again open a group file & remove the record for the respective

Group.

To view the information regarding all the LINUX groups on the system we can simply open the group file in any text editor.
LINUX NETWORKING
For networking firstly your hardware must be properly configured. Your network card should have been setup during the Linux installation or after the installation. Under Linux most drivers for network cards are implemented as modules, after the module is inserted, you may want to inspect the file /proc /modules to see if the module is loaded. The module configuration file is modules.conf in /etc . After setting up the network and connecting the cables, set up the network by running the command :- netconfig

While setting up the network, don’t mess up with the “loop back driver” which has the IP address 127.0.0.1. It is always there-it is the IP through which the computer talks to itself. IP address is allocated either statically or dynamically.

For Linux Networking (communication through a network), the two basic requirements are Media and Rules :-

1. By media we mean the communication link (cables), hubs and switches. It may be wired or wireless. Hubs are dumb, not an intelligent device. It works at the Physical layer whereas Switches are intelligent devices and works at Data link layer. To obtain good performance we make use of Switches. In a Switch, direct routing is possible, the data packet is unicasted and not broadcasted, the packet doesn’t traverse to all the port but direct connection is made via IP address. Thus it has high performance, Switches maintain the IP address table for mapping process.

2. By rules we mean the set of protocols used for communication. Rules or the protocol to be used depends on the OS on the end systems, if both the end- systems have MS-Windows then for small network we use Netbui protocol & for larger networks use of TCP/IP is made. End systems having LINUX as OS make use of TCP/IP protocol.

Network Designing & Implementation (Local Area Network):-

	Hardware Requirement For Red Hat Linux Network Installation

	· Pentium base Server with 64 MB RAM

	· Hard disc drive of minimum 4.3 GB

	· Ethernet Card (NIC) 10/100 MBPS

10 Nos

	· Ethernet Hub 10/100 MBPS 12 Port

 01 Nos

	· UTP CAT 5e Cable

 500 Meter (Approx)

	· RJ-45 Connector

30 Nos

	Software & Operating System

	· Red Hat Linux 8.0 Professional Server

 01 Nos

	· Client Operating System

 20 Nos

	Network Installation & Implementation

	· Red Hat Linux 8.0 Professional installation and Configuration (LAN/WAN)

NETWORK SETUP FOR ISP USING LINUX AS OS :-

	 SHAPE * MERGEFORMAT

 FIG (1) Diagram for Network Setup for ISP
 In the above ISP Network diagram we can see a PRI line, it is a telephone line from BSNL taken by the ISP, PRI stands for primary rate interface, it contains 32 channels out of which 2 are reserved for signaling and the rest are to used for connection of the user with the ISP. One PRI line can serves 30 users at a time. Other than PRI line the ISP requires a certain bandwidth for getting connected to the internet & this bandwidth is provided by the providers as Escotel, net4india, TATA, BSNL etc.

LLM, lease Line Modem, it is the hardware required to use the provided bandwidth. Radius Server, is the server used for billing and accounting of the users. The user authentication is also checked by this server only. Squid Proxy Server, is he LINUX based server & is used for internal networking.

 RAS-Remote Access Server, helps in connection establishment & provides a free port to the user to get connected to the ISP.

The user dials up and the call goes to the PSTN which is routed to the RAS to which the user is connected to the free port. The user is then authenticated via the Radius Server. The DHCP gives a dummy IP address to the user and all the other servers are provided with the fixed real IP addresses. The request from the user goes to the DNS which contain information of other server & DNS, the user access the request using router with address from DNS.

	

 Router

[image: image5.png]
 Switch

 [image: image6.png]

 [image: image7.png]

 [image: image8.png]

 IBM Server
 Compaq Server
 HCL Squid Proxy

 Server

 FIG (2) Network Diagram for Server Room of CTD
Squid Proxy Server : - Squid is a high –performance proxy caching server for Web Clients, Supporting FTP, Gopher and HTTP data objects. Unlike traditional caching software, Squid handles all requests in a single, on blocking, I/O driven process. Squid keeps meta data and especially hot objects cached in RAM, Caches DNS lookups and implements negative caching of failed requests. Squid consists of a main server program squid, a Domain Name System lookup program , a program for retrieving FTP data and management and client tools.
	1. I B M Server

	 Operating System : Windows 2000 Server , Running FTP Server

	2. Compaq Server

	 Operating System : Redhat Linux 8.0 Professional Server

	· Installation and Configuration of Redhat Linux 8.0

	· Configuration of Firewall

	· Installation and Configuration of DNS Server

	· Installation & Configuration of Mail Server,Q-mail, Linux base Mailing soln’s

	· Installation and Configuration of Apache Web Server

	· Configuring FTP Server & Telnet Services

	3. HCL Squid Proxy Server

	 Operating System : Redhat Linux 8.0 Professional Server

	· Installation and Configuration of Redhat Linux 8.0 Professional

	· Installation and Configuration of Squid Proxy Server

FTP,TELNET,NFS SERVICES

Before connecting, ensure that packet filtering is not active. For disable packet filtering run , #service iptables stop.

Service Profile: vsftpd

Type: xinetd-manged service

Packages: vsftpd , anonftp

Daemons: vsftpd

Ports: 21/tcp(ftp),20/tcp(ftp-data)

Configuration: /etc/vsftpd.conf

Service: vsftpd

FTP Service is used for transferring files to/from a remote location. For file transfer the service vsftpd must be running on the remote server.

Service Profile: Telnet

Type: xinetd-manged service

Packages : xinetd

Daemons: xinetd

Ports: 23/tcp(telnet)

Configuration: /etc/xinetd.d/telnet

Service: xinetd

telnet service is used for remote login to a host system. To login successfully, the service xinetd must be running on the host system.

Service Profile: NFS

Type : System V-launched service

Packages: nfs-utils

Deamons: nfsd,lockd,rpciod

Ports: Assigned by portmap(111)

Configuration: /etc/exports

Service: nfs

NFS Service is used when the Disks need to be shared between Linux Servers. Directories on the NFS Server are presented to the network as special NFS file systems and the Remote NFS clients use the mount command to get access to them. To work NFS only UNIX like O/S must be

Installed in both sides.

Steps to Configure NFS Server :

1. nfs-utils-1.0.4-5 is the package for NFS.

2. /etc/exports is the configuration file.

3. Open the /etc/exports file in ‘vi’ editor and specify the

 permissions for the directories in specific format :

The fle may contain entry like :

/var/ftp/pub *(rw, sync)

/home/hemant *(rw,.sync)

4. Run the command -

 # exports –a to activate the changes in the file.

SERVER CONFIGURATION

There are different Linux servers that must be well configured to run ISP efficiently. There are Linux servers which has major contribution in running of ISP are :

 1. Domain Name (DNS) Server

 2. Network Information (NIS) Server

 3. Samba Server

 4. Apache Web Server

 5. Mail Server

 6. Dynamic Host Configuration Protocol (DHCP) Server

7. Proxy Server

(1) DHCP Server :- (Dynamic Host Configuration Protocol)

Service Profile : DHCP

Type : System V-launched service

Packages : dhcp

Daemons : dhcpd

Script : dhcpd

Ports : 67(bootps), 68(bootpc)

Configuration : /etc/dhcpd.conf , /var/lib/dhcp/dhcpd.leases

Service : dhcpd

DHCP provides methods for hosts on a TCP/IP network to request and be granted IP address, and also to discover information about their local network. IP addresses are either dynamically assigned from a range or pool of addresses, or statically assigned by MAC address. Typically, the server will supply information about the network’s subnet address and netmask, its default gateway, domain name and DNS server, and location of kickstart configuration files. Dhcpd is configured in /etc/dhcpd.conf and managed with service. Toconfigure a dhcpd server ,first use ifconfig to verify that a BROADCAST address is specified in your network configuration;DHCP resuests are broadcast and sent to a specific server.

Next , create the /etc/dhcpd.conf file. You’ll need to configure lease times, optional subnet masks, router addresses, DNS servers and IP address or ranges of address for your clients. Leased IP addresses are kept in /var/lib/dhcp/dhcpd.leases as they are assigned.

(2) DNS Server :- (Domain Name Server)

DNS makes it possible to refer to IP-based systems(hosts) by human-friendly names (domain names). Name resolution is the act of determining the IP address (or addresses) of givin hostname. The benefits of DNS are two fold. First , domain names can be lo0gical and easily remembered. Second an IP address for a host change, the domain name can still resolve transparently to the user. The domain name should be a fully-qualified domain name(FQDN).

Hosts that are designed to perform email routing –mail exchangers—have special purpose records in DNS (MX records).

 Service Profile : DNS
Type : System V-launched daemon

Packages : bind , bind-utils

Daemons : named

Scripts : named

Ports : 53 udp, 53 tcp

Configurations: /etc/named.conf, /var/named/ *

Service : named

You will configure your name server to take responsibility for the “domain XX.example.com “ forword lookup zone. You will also take responsibility for a corresponding reverse lookup zone. The followinf steps will be involved:

A. Editing the configuratrion file (named.conf)

B. Preparing database file for the “domainXX.example.com” zone and the

“XX.0.168.192.in-addr.arpa” zone

C. Restarting the name server

D. Testing your configuration
(3) NIS Server :- (Network Information Service)

Network information Service serves a central user information database. Commonly provides user and group names,home directory information and authentication information. Machines running NIS client daemons will allow users in the central NIS database to authenticate.

Service Profile : NIS

Type : System V-launched service

Packages : ypserv,ypbind,yp-tools

Daemons : ypserv, ypbind, rpc.yppasswdd

Scripts : ypserv, ypbind, yppasswdd

Ports : Assigned by portmap(111)

Configuration : /etc/yp.conf, /var/yp/ *, /etc/nsswitch.conf,

 /etc/sysconfig/network

Service : ypserv at server side

 ypbind at client side

(4) Apache web Server :-

Apache is Red Hat’s standard web server .

Apache is the most widely used web server:

 -used by more internet web servers than all others combined

 -provides a very stable and scalable web server platform

Process control:

 -spawn processes before needed

 -adapt number of processes to demand

Dynamic module loading:

 -run time extensibility without recompiling

Virtual hosts:

 -multiple web sites may share the same web server

Service Profile : Apache
Type : system V-launched service

Packages : httpd

Daemons : httpd

Scripts : httpd

Ports : 80/tcp(http), 443/tcp(https)

Configuration : /etc/httpd/ * , /var/www/ *

Service : httpd

(5) Samba Server :-

The goal of Samba project is provide the services and features offered by Microsoft’s own CIFS implementations. This has been very successfully achieved, with servel real-word tests in leading computer publications showing significant performance advantages of Samba over Microsoft’s native implementations. Samba is now developed as an Open Source project through the contributions of the internet community.

Four main services are provided:

 -authentication and authorization of users

 -file and printer sharing

 -name resoluation

 -browsing(service announcements)

Related:

 -smbclient command-line access

 -smbfs Linux can mount an SMB share

Samba daemons:

 -nmbd : NetBIOS name server

 resourse browsing

 WINS(windows internet name services)

 -smbd : SMB/CIFS server

 authentication and authorization

 file and printer sharing

Service Profile : Samba

Type: System V-launched service

Packages: samba{,-common,-client}

Daemons: nmbd, smbd

Script: smb

Ports: 137,138,139

Configuration: /etc/samba/smb.conf

(6) MAIL Server :-

The three parts to message transfer are the Mail Transfer Agent(MTA), the Mail Delivery Agent(MDA), and Mail User Agent(MUA). The MTA(commonly referred to as the mail server, of which sendmail is an example) actually handles distributing outgoing mail and listening for incoming mail from the Internet.The MDA accepts messages from the MTA and copies theb message into a user’s mailbox. Linux Uses /usr/bin/procmail as the default MDA , as specified in sendmail’s configuration file. For sites that have a centralized mail server ,Post Office Protocol (POP) clients are also considered MDAs. An MUA is the program run by a user to read incoming mail or send messages to others. Sendmail is the most common mail server on the Internet. It is estimated that nearly 70 persent of all e-mail messages on the Internet are delivered by sendmail.

It allows many different types of email addresses to be routed and supports virtual domains and users.it provides automatic reray for failed delivery and other error Conditions.

Service Profile : Sendmail
Type: system V-launched daemon

Packages: sendmail{,-cf,-doc}

Daemons: sendmail

Scripts: sendmail

Ports: 25(smtp)

Configuration: /etc/mail/sendmail.cf

 /etc/mail/submit.cf,

 /etc/mail/sendmail.mc

Service: sendmail

(7) Proxy Server :-

If computer has both a connection to the LAN and a connection to the Internet then one way to provide Web-browsing services to the computers on the LAN

Without setting up routing is to configure Linux computer as a proxy server.

Squid is an internet object cache that can act as a proxy server for HTTP,FTP,

And other requests. Clients request URLs from Squid, which then either serves cached copies of the URLs if they have been previously requested. URLs associated with dynamic content(CGI executables, server-parsed pages) get forwarded, rather being served out of the cache.

Service Profile : Proxy Server
Type: system V-launched service

Packages: squid

Daemons: squid

Ports: 3128

Configuration: /etc/squid/squid.conf
Service: squid

Basic Squid Configuration

1. Install squid on your system.

2. Start the service (service squid start), then configure your web browser to use your proxy with the port set to 3128

3. Try access a web page somewhere. If classroom does not have Internet access, try http://server1.example.com , which should return the Apache test page.

4. Now have a neighbor configure his or her web browser to use your proxy. This should not work.

5. Open /etc/squid/squid.conf in your preferred text browser. As you see, it is mostly comments and documentation. You will also note that squid is extremely configurable and tunable. For this lab, we will configure a basic setup that will be adequate for many settings.

6. Search for Recommended minimum configuration in the file. This will take you to the default access control lists,or acls. Add an acl for the local network below the acl CONNECT method CONNECT line :You can now refer to this network as example elsewhere in the configuration file. src means that the IP specified id the source IP(s) for this acl. a line beneath the localhost acl like the following:

acl
example
src

192.168.0.0/24

7. http Search further down in the file for INSERT YOUR OWN RULE(s) HERE. Add Res_access
allow
example ert squid. Your neighbor should now be able to access your cache.

8. Some URLs are best avoided completely. Return back the section, and add the following lines beneath the line you added earliar(use.example.com if you do not have Intetnet access in your classroom):

 acl
otherguys
dstdomain
 .microsoft.com

 acl
otherguys
dstdomain
 .suse.com

There are a couple of things to mention to mention here. First, note that the additive property of acls. Both of the domains are added to the acl. Second, note the dstdomain acl type,which specifies that this definition consers destination domains. Third, note the use of dot notation in specifying the domain name . Make sure to include the leading dot.

9. Add a rule to deny access to these problematic domains.Return to where you added the allow rule for example, and below it add the following:

http_access

deny

otherguys

Restart squid again, then check one or more of the web sites associated with those domains.Unfortunately,you find access is not denied.

10. Open the configuration file again, and move the deny rule you added so that it is before the allow rule for example. Order matters, so by having the allow rule for example before the deny rule for the other guys destinations, access was allowed and the deny rule never took effect. After moving the rule, restart squid once more.

NETWORK SECURITY

We can convert our Linux box into a firewall using the IPtables package. This page shows how to convert our Linux box into

· A firewall while simultaneously being our home website’s mail, web and server.

· A router that will use NAT and port forwarding to both protect our home network and have another web server on our home network while sharing the public IP address of our firewall.

What is iptables?

Originally, the most popular firewall / NAT package running on Linux was ipchains. It had a number of limitations, the primary one being that it run as a separate program and not as a part of the kernel. The Netfilter organization decided to create a new product called iptables in order to rectify this shortcoming. As aresult of this, iptables is considered a faster and more secure alternative. Iptables has now become the default firewall package installed under RedHat Linux.

Packet processing in iptables –

All packets inspected by iptables pass through a sequence of built-in tables(queues) for processing. Each of these queue is dedicated to a particular type of packet activity and is controlled by an associated packet transformation / filtering chain.

Configuration file for iptables is /etc/sysconfig/iptables, ,where linux saves firewall commands. In this file four different chains are INPUT,FORWORD,OUTPUT and RH-Lokkit-0-50-INPUT. The first three chains are default chains that allow all traffic to flow through the firewall. All of the commands that follow the –A are appended to the end of the RH-Lokkit chain.

Format of iptables-

The iptables command has a very specific format :

Iptables –t table option pattern –j target

The first option here is based on the –t tables option. Two basic tables are available: filter and nat. The nat table supports the Network Address Translation associated with masquerading. The filter table allow you to block or allow specific types of network traffic. Because –t filter is the default, this option is usually not specified in a firewall configuration file.

 SHAPE * MERGEFORMAT

Checksum – drop corrupted packets

Sanity – drop malformed packets

PREROUTING – perform Destination Network Address Translation on designated packets before routing.

Routing Decision – route inbound packets to either the INPUT or FORWARD chain.

INPUT – evaluate packets ; ACCEPTed packets go to appropriate local process

FORWARD – evaluate packets ; ACCEPTed packets sent to POSTROUTING

OUTPUT(filter) – evaluate locally generated outbound packets ; ACCEPTed packets are routed based on system’s routes

OUTPUT(nat) – used to perform DNAT on designated packets before handing off to OUTPUT chain on filter table

POSTROUTING – perform Source Network address Translation on designated packets.

Options for iptables -

OPTION

FUNCTION

-A chain rule

appends a rule to the end of a chain

-D chain number
deletes the rule number from the specified chain

-F chain
Flushes, or deletes, all rules from the specified chain

-I chain number rule
serts a rule as the specified rule number in the noted chain

-L chain

Lists the current rules in the specified chain

-N chain

starts a new nonstandard chain

-X chain

Deletes a user-defined chain

SWITCHES FOR IPTABLES –

SWITCH

FUNCTION

--dport port
specifies the destination TCP/IP port number

--icmp-type message
Allows you to specify the type of ICMP message ; echo-request corresponds to the messages sent by a ping command.

-j action
notes an action to be taken if the requirements of the command are satisfied; normally ACCEPT,DROP,REJECT,or LOG.

--limit time
Sets an allowable rate for a specific message; can be
 seconds,minutes,hours, or days; e.g.,2/s=2 per second.

-m condition
Looks at the data for a match; may be a protocol,
such as tcp or udp, or condition, such as a limit.

-p protocol
Checks the data for a specified protocol, such as tcp

or udp.

-s ip_address

 Specifies a source IP address.

--sport port

Sets a source TCP/IP port.

--tcp-flags fl1,…
Looks for flags in a TCP packet SYN(synchronize) packets are sent from a client and
expect
a
reply.ACK(acknowledgment) packets acknowledge SYN
requests.
A FIN(finish) packet is the final one in a

communication.
RST(reset) packets tell a client that a request has
been rejected.

Actions for iptables –

ACTION

EXPLANATION

-j ACCEPT
Allows packets that match the specified characteristics into, out of, or through your computer.

-j DROP
Stops packets that match the specified characteristics into, out of, or through your computer.

-j REJECT
Stops packets that match the specified characteristics into, out of, or through your computer; a message is sent to the computer that sent the message.

-j LOG

Logs a record of matching packets in /var/log/messages.

Patterns for iptables -

We need to specify a pattern to match in the chain. Patterns can match the IP address of the message sender or source , the TCP/IP port, and or the protocol.

Ip address Patterns –

If we want to regulate the ping command solely from IP address 199.88.77.66. we could do with the following command:

iptables _a FORWARD –s 199.88.77.66 –p icmp –icmp-type

 echo-request –m limit --limit 1/s –j ACCEPT

If we could reverse the effect and regulate the ping command from every other address,

By using an exclamation point :

iptables –A FORWARD –s !199.88.77.66 –p icmp –icmp-type

 echo-request –m limit –limit 1/s –j ACCEPT

It helps to specify a range of IP addresses such as a LAN .The following commands combine a network IP address with a subnet mask in regular and CIDR notation.

iptables –A FORWARD –s 199.88.77.66/255.255.255.0 –p icmp –icmp-type

 echo-request –m limit –limit 1/s –j ACCEPT

TCP/IP protocol Patterns –

The iptables command looks at every data packet that comes in, goes out, or forwards through our computer. We can tell the command to look for a specific protocol. The most

Common protocol patterns are based on TCP,UDP, and ICMP. The key is the –p option, which specifies the protocol.To prevent the ping uses the following command :

iptables _a FORWARD –s 199.88.77.66 –p icmp –icmp-type

 echo-request –m limit --limit 1/s –j REJECT

TCP/IP Port Patterns –

In TCP/IP Protocol over 65000 ports are available. Many of these ports are dedicated

To standard services. The following command stops any attempt to connect from the 199.88.77.0/24 network with TCP packets to port 21, which is associated with FTP :

iptables –A FORWARD –s 199.88.77.0/24 –p tcp –dport 21 –j REJECT

Starting With A Firewall –

Assume that we have a LAN of two or more computers. If we have firewall rules in /etc/sysconfig/iptables that we want to save, back them up. Append the rule on the ping of death .Revise it so it drops any ping requests from within our LAN.

The following steps assume a LAN with an address of 192.168.0.0/24; if our LAn has a different address and network mask,substitute accordingly.

1. Back up any current firewall.Copy /etc/sysconfig/iptables to a file in our home directory.

2. Flush any rules in our current firewall with the iptables –F command.

3. Append the ping of death rule as shown. This stops any pings to our computer (INPUT) from the cited network :

iptables –a INPUT –s 192.168.0.0/24 –p icmp –icmp-type echo-request –j DROP
4. Try the ping 127.0.0.1 command on the local computer. It should still work.

5. Go to another computer on your LAN. Try to ping the IP address of the first computer. You should see one ping message before everything stops.

6. If necessary, restore the original /etc/sysconfig/ iptables file.

Saving configuration Changes –

We can save configuration changes to /etc/sysconfig/iptables with the service iptables save command.

 BIBLIOGRAPHY
As per the need of my project of networking on linux operating system, I required information regarding various tools used in networking. Therefore I have gone through several books for above informations. My project co-ordinator has suggested me to go through some books whose list is as follows :-

 Books:-

 1. Red Hat Linux System Administration RH133.

 2. Red Hat Linux Essentials RH033.

 3. Red Hat Linux Networking and Security Administration RH253.

 provided by Red Hat Corporation.

 4. Special Edition usingLINUX by Jack Tackett, jr., David Gunter, Lance

 Websites:-

1. www.redhat.com
2. www.ltsp.org
3. www.wilisystem.com
4. www.linux.com
 PSTN

 USER

R

A

S

 SWITCH

 DNS

 DHCP

 LLM

 ROUTER

INTERNET

RADIUS SERVER

 SQUID

 PROXY

 SERVER

Internal Networking

 Node- PC

 PRI

 LINE

 MAIL SERVER

 WEB SERVER

 Internet

 Cloud

 Checksum

Inbound packet

 Sanity

 PREROUTING

Routing Decision

 FORWARD

 INPUT

Local Application

POSTROUTING

 OUTPUT

 OUTPUT

Outbound packet

ram amit anil

bin		 dev	 etc	 home root tmp sbin

/

_1157389745

