

# Ground Water Pollution

### What is Groundwater ?



- water that exists in the pore spaces and fractures in rock and sediment beneath the Earth's surface
- a long-term reservoir of the natural water cycle



- <u>originates</u> as rainfall or snow
- <u>moves</u> through the soil
- <u>back to</u> surface streams, lakes, or oceans



www.voelckerconsultants.co.uk/contaminated%20...



#### **Ground Water Contamination ?**

- Pure water: contains essential chemical elements and minerals of water at very low levels and do not pose a significant risk to health.
- Pollution: occurs when waste products or other substances change the chemical or biological characteristics of the water and degrade water quality so that animals, plants or human uses of the water are affected.
- Pollutants: include plant nutrients, bacteria, viruses, pesticides, herbicides, hydrocarbons (including petrol and oil), heavy metals and other toxic chemicals
- MCL: Maximum Contaminant Level, quoted for every substance

#### Water Quality Criteria

| Designated-Best-                                                                           | C11         | Casitoraia                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use                                                                                        | Class       | Criteria                                                                                                                                                                                                                 |
| Drinking<br>Water Source<br>without<br>conventional<br>treatment but after<br>disinfection | А           | <ol> <li>Total Coliforms OrganismMPN/100ml shall be<br/>50 or less</li> <li>pH between 6.5 and 8.5</li> <li>Dissolved Oxygen 6mg/l or more</li> <li>Biochemical Oxygen Demand 5 days 20°C<br/>2mg/l or less</li> </ol>   |
| Outdoor bathing<br>(Organized)                                                             | в           | <ol> <li>Total Coliforms Organism MPN/100ml shall be<br/>500 or less</li> <li>pH between 6.5 and 8.5</li> <li>Dissolved Oxygen 5mg/l or more</li> <li>Biochemical Oxygen Demand 5 days 20°C<br/>3mg/l or less</li> </ol> |
| Drinking water<br>source after<br>conventional<br>treatment and<br>disinfection            | с           | <ol> <li>Total Coliforms Organism MPN/100ml shall be<br/>5000 or less</li> <li>pH between 6 to 9</li> <li>Dissolved Oxygen 4mg/l or more</li> <li>Biochemical Oxygen Demand 5 days 20°C<br/>3mg/l or less</li> </ol>     |
| Propagation of Wild<br>life and Fisheries                                                  | D           | <ol> <li>pH between 6.5 to 8.5</li> <li>Dissolved Oxygen 4mg/l or more</li> <li>Free Ammonia (as N) 1.2 mg/l or less</li> </ol>                                                                                          |
| Irrigation, Industrial<br>Cooling, Controlled<br>Waste disposal                            | E           | <ol> <li>pH between 6.0 to 8.5</li> <li>Electrical Conductivity at 25°C micro mhos/cm<br/>Max.2250</li> <li>Sodium absorption Ratio Max. 26</li> <li>Boron Max. 2mg/l</li> </ol>                                         |
|                                                                                            | Below-<br>E | Not Meeting A, B, C, D & E Criteria                                                                                                                                                                                      |

# **Pollutants**

- Undesirable chemical constituents organic (e.g., Benzene, Carbon
   Tetrachloride, Cis-1,2-Dichlorethylene, Styrene etc.) and
  - inorganic (e.g., chloride, sulphate, iron, manganese, sodium, potassium)
- Total hardness and total dissolved solids
- Toxic constituents (typical, not complete list) nitrate, arsenic, chromium, lead, cyanide, copper, phenols, dissolved mercury.
- Undesirable physical characteristics taste, colour and odour.
- Pesticides and herbicides chlorinated hydrocarbons and others
- Radioactive materials various forms of radioactivity
- Biological bacteria, viruses, parasites and so on
- Acid (low pH) or caustic (high pH)

#### **Sources of Contamination**









#### **Effects On Human**

- Water-born diseases
- Effects due to high concentration of salts and heavy metals
- Using contaminated agricultural and livestock products
- Increase the cost of production for industries which use extra treatment of the ground water
- Corrosion effects in pipe lines, boilers and other water carrying equipments

# Inorganic contaminants found in ground water

| Contaminant      | Potential health and other effects                                                                                                                                                                                                                                                                                                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arsenic          | Causes acute and chronic toxicity, liver and kidney damage; decreases blood hemoglobin. Possible carcinogen.                                                                                                                                                                                                                          |
| Chloride         | Deteriorates plumbing, water heaters, and municipal water-works<br>equipment at high levels.<br>Above secondary maximum contaminant level, taste becomes<br>noticeable.                                                                                                                                                               |
| Chromium         | Chromium VI causes liver and kidney damage, internal hemorrhaging,<br>respiratory<br>damage, dermatitis, and ulcers on the skin at high concentrations.                                                                                                                                                                               |
| Copper           | Can cause stomach and intestinal distress, liver and kidney damage,<br>anemia in high doses. Imparts an adverse taste and significant<br>staining to clothes and fixtures. Essential<br>trace element but toxic to plants and algae at moderate levels.                                                                               |
| Cyanide          | Poisoning is the result of damage to spleen, brain, and liver.                                                                                                                                                                                                                                                                        |
| Dissolved solids | May have an influence on the acceptability of water in general. May be<br>indicative of the<br>presence of excess concentrations of specific substances not included<br>in the Safe Water<br>Drinking Act, which would make water objectionable. High<br>concentrations of dissolved<br>solids shorten the life of hot water heaters. |
| Fluoride         | Decreases incidence of tooth decay but high levels can stain or mottle<br>teeth. Causes crippling<br>bone disorder (calcification of the bones and joints) at very high<br>levels.                                                                                                                                                    |
| Hardness         | Decreases the lather formation of soap and increases scale formation in hot-water heaters and low-pressure boilers at high levels.                                                                                                                                                                                                    |

| Iron                                  | Imparts a bitter astringent taste to water and a brownish color to laundered clothing and plumbing fixtures.                                                                                                                                                                               |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lead                                  | Affects red blood cell chemistry; delays normal physical and mental<br>development in<br>babies and young children. Causes slight deficits in attention span,<br>hearing, and learning<br>in children. Can cause slight increase in blood pressure in some adults.<br>Probable carcinogen. |
| Manganese                             | Causes aesthetic and economic damage, and imparts brownish stains to<br>laundry. Affects<br>taste of water, and causes dark brown or black stains on plumbing<br>fixtures. Relatively<br>non-toxic to animals but toxic to plants at high levels.                                          |
| Mercury                               | Causes acute and chronic toxicity. Targets the kidneys and can cause nervous system disorders.                                                                                                                                                                                             |
| Nickel                                | Damages the heart and liver of laboratory animals exposed to large amounts over their lifetime.                                                                                                                                                                                            |
| Nitrate (as nitrogen)                 | Toxicity results from the body's natural breakdown of nitrate to nitrite.<br>Causes "bluebaby disease," or methemoglobinemia, which threatens<br>oxygen-carrying capacity of the blood.                                                                                                    |
| Nitrite (combined<br>nitrate/nitrite) | Toxicity results from the body's natural breakdown of nitrate to nitrite.<br>Causes "bluebaby disease," or methemoglobinemia, which threatens<br>oxygen-carrying capacity of the blood.                                                                                                    |
| Selenium                              | Causes acute and chronic toxic effects in animals"blind staggers" in cattle. Nutritionally essential element at low doses but toxic at high doses.                                                                                                                                         |

| Silver   | Can cause argyria, a blue-gray coloration of the skin, mucous membranes, eyes, and organs in humans and animals with chronic exposure.                        |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sodium   | Can be a health risk factor for those individuals on a low-sodium diet.                                                                                       |
| Sulfate  | Forms hard scales on boilers and heat exchangers; can change the taste of water, and has a laxative effect in high doses.                                     |
| Thallium | Damages kidneys, liver, brain, and intestines in laboratory animals when given in high doses over their lifetime.                                             |
| Zinc     | Aids in the healing of wounds. Causes no ill health effects except in very high doses. Imparts an undesirable taste to water. Toxic to plants at high levels. |

#### Organic contaminants found in ground water

| Contaminant                                                             | Potential health and other effects                                                                                                                                                                    |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volatile organic compounds                                              | Can cause cancer and liver damage, anemia, gastrointestinal disorder,<br>skin irritation, blurred vision, exhaustion, weight loss, damage to<br>the nervous system, and respiratory tract irritation. |
| Pesticides                                                              | Cause poisoning, headaches, dizziness, gastrointestinal disturbance,<br>numbness, weakness, and cancer. Destroys nervous system,<br>thyroid, reproductive system, liver, and kidneys.                 |
| Plasticizers, chlorinated<br>solvents,<br>benzo[a]pyrene, and<br>dioxin | Cause cancer. Damages nervous and reproductive systems, kidney, stomach, and liver.                                                                                                                   |

#### Microbiological contaminants found in ground water

| Coliform bacteria | Bacteria, viruses, and parasites can cause polio, cholera, typhoid |
|-------------------|--------------------------------------------------------------------|
|                   | fever, dysentery, and infectious hepatitis.                        |

#### Radiological contaminants found in ground water

| Gross alpha-particle activity          | Damages tissues and destroys bone marrow.                       |
|----------------------------------------|-----------------------------------------------------------------|
| Combined radium-226 and radium-228     | Causes cancer by concentrating in the bone and skeletal tissue. |
| Beta-particle and photon radioactivity | Damages tissues and destroys bone marrow.                       |



### **Agriculture Impacts**

- Salts in soil or water reduce water availability to the crop to such an extent that yield is affected
- Relatively high sodium or low calcium content of soil or water reduces the rate at which irrigation water enters soil to such an extent that sufficient water cannot be infiltrated to supply the crop adequately from the irrigation to the next
- Certain ions (sodium, chloride, or boron) from soil or water accumulate in a sensitive crop to concentrations high enough to cause crop damage and reduce yields
- Excessive nutrients reduce yield or quality; unsightly deposits on fruit or foliage reduce marketability; excessive corrosion of equipment increases maintenance and repairs
- Effects the production from live stocks

#### **Environmental Impacts**



- Eutrophication of lakes and rivers
- Contamination of rivers and lakes due to leakage of contaminated groundwater in rivers and lakes
- Change the microbiological balance of soil
- Change of arable land to barren land due to use of contaminated groundwater

#### **Indian Scenario of Groundwater Pollution**



| Pollutant             | State          | Place of occurrences                                              |
|-----------------------|----------------|-------------------------------------------------------------------|
| Salinit y<br>(Inland) | Maharasht ra   | Amravati, Akola                                                   |
|                       | Bihar          | Begusarai                                                         |
|                       | Haryana        | Karnal                                                            |
|                       | Rajasthan      | Barmer, Jaisalmer, Bharatpur, Jaipur, Nagaur, Jalore &<br>Sirohi  |
|                       | U.P.           | Mathura                                                           |
| Salinit y             | Andhra Pradesh | Vishakapat nam                                                    |
| (Coastal)             | Orissa         | Puri, Cuttak, Balasore                                            |
|                       | West Bengal    | Haldai & 24 Pargana                                               |
|                       | Gujarat        | Junagarh, Kachch, Varahi, Banskanta & Surat                       |
| Flouride              | Kerala         | Palaghat Krishna, Ananipur, Nellor, Chittoor.                     |
|                       | Andhra Pradesh | Cuddapah, Guntur and Nalgonda                                     |
|                       | Gujarat        | Banskanta, Kachch & Amreli                                        |
|                       | Haryana        | Hissar, Kaithal & Gurgaon                                         |
|                       | Orissa         | Bolangir, Bijapur, Bhubaneshwar and Kalahandi                     |
|                       | Punjab         | Amritsar, Bhatinda, Faridkot, Ludhiana & Sangrur                  |
|                       | Rajasthan      | Nagaur, Pali, Sirohi, Ajmer & Bikaner                             |
|                       | Tamil Nadu     | Chengalput , Madurai                                              |
|                       | U.P.           | Urnao, Agra, Aligarh, Mathura, Ghaziabad, Meerut & Rai<br>Baraili |
| Sulphide              | Orissa         | Balasore, Auttak & Puri                                           |
| Iron                  | U.P.           | Minjapur                                                          |
|                       | Assam          | Darrang, Jorhat, Kamrup                                           |
|                       | Orissa         | Bhubaneshwar                                                      |
|                       | Bihar          | E. Champaran, Muzaffarpur, Gaya, Manger, Deoghar &<br>Madubani    |
|                       | Rajasthan      | Bikaner, Alwar, Bharatpur                                         |
|                       | Tripura        | Dharmnagar, Kailasanar, Ambasa, Amarpur & Agartala                |
|                       | West Bengal    | Madnipur, Howrah, Hoogly and Bankura                              |
| Waganese              | Orissa         | Bhubaneshwar, Athgaan                                             |
|                       | U.P            | Muradabad, Basti, Rampur & Unnao                                  |

| Arsenic  | West Bengal      | Malda, Murshidabad, Nadia, 24 Pargana                                                                                    |
|----------|------------------|--------------------------------------------------------------------------------------------------------------------------|
| Nit rate | Bihar            | Patna, East Champaran, Palamu, Gaya, Nalanda, Nawada and<br>Banka                                                        |
|          | Andhra Pradesh   | Vishakapatnam, East Godvari, Krishna, Prakasam, Nellor,<br>Chittoor, Anantpur, Cuddapah, Kurnool, Khamam and<br>Nalgonda |
|          | Delhi            | Naraina, Shehadr (Blocks)                                                                                                |
|          | Haryana          | Ambala, Sonepat, Jind, Gurgaon, Faridabad & Hissar                                                                       |
|          | Himachal Pradesh | Kulu, Solan, Una                                                                                                         |
|          | Karnataka        | Bidar, Gulbarge and Bij apur                                                                                             |
|          | Madhya Pradesh   | Sehore, Bhopal & (West & Central Part of state)                                                                          |
|          | Maharasht ra     | Jalna, Beed Nanded, Latur, Osmanabad, Solapur Satara,<br>Sangli and Kolhapur                                             |
|          | Punjab           | Patiala, Faridkot, Firozpur, Sangrur & Bhatinda                                                                          |
|          | Rajasthan        | Jaipur, Churu, Ganganagar, Bikaner, Jalore, Barmer, Bundi<br>and Sawaimadhopur                                           |
|          | Tamil Nadu       | Coimbatore, Penyar and Salem                                                                                             |
|          | West Bengal      | Uttar Dingipur, Malda, Birbhum, Murshidabad, Nadia,<br>Bankura and Purulia.                                              |
| Chloride | Karnataka        | Dharwad, Belgaum                                                                                                         |
|          | Madhya Pradesh   | Bhind, Shagapur and Sehore                                                                                               |
|          | Maharasht ra     | Solapur, Satara, Amravati, Akola 🌢 Buldana                                                                               |
|          | Rajasthan        | Barmer, Jaisalmer, Jodhpur & Jalore                                                                                      |
|          | West Bengal      | Contai, Digha, Haldia                                                                                                    |
| Zinc     | Andhra Pradesh   | Hyderabad, Osmania University campus                                                                                     |
|          | Delhi            | R.K. Puram                                                                                                               |
|          | Rajasthan        | Udaipur                                                                                                                  |
| Chromium | Punjab           | Ludhiana                                                                                                                 |
|          |                  |                                                                                                                          |

#### **Present Efforts Against Contamination**

- 1. Identification of contamination sources
- 2. Setting water quality standards for particular uses.
- > monitoring water quality to detect contamination
- > declaring water source protection areas
- planning controls to limit the types of land uses permitted
- relocating potentially contaminating activities
- Managing activities to minimize their impact (e.g. waste disposal, transport of hazardous chemicals)
- identifying and cleaning up contaminated sites
- changing land use to minimize the risk of contamination



#### 3. Some Acts

- I974- The Water (Prevention and Control of Pollution) Act establishes an institutional structure for preventing and abating water pollution. It establishes standards for water quality and effluent. Polluting industries must seek permission to discharge waste into effluent bodies. The CPCB (Central Pollution Control Board) was constituted under this act.
- I977- The Water (Prevention and Control of Pollution) Cess Act provides for the levy and collection of Cess or fees on water consuming industries and local authorities.
- On December 10, 1996, the Supreme Court directed the Union ministry of environment and forests (MEF) to empower the Central Ground Water Board (CGWB) under the ministry of water resources to initiate penal action under the Environment Protection Act, 1986, against overexploitation of groundwater. This led to the creation of CGWB. But in the past three years, CGWB has invited a lot of criticism. It is quite clear from the case studies that pollution control authorities are not capable of dealing with the groundwater crisis.

### 4. Miscellaneous:



- > Proper design, maintenance, and operation of waste disposal units.
- Avoid sensitive groundwater areas for use of septic systems or disposal pit etc.
- Regular inspection and groundwater monitoring.
- > Ban hazardous wastes from landfill unless designed for this purpose
- Reduce waste by recycling.
- > Using less harmful materials for agricultural and industrial purposes.
- > Leak backup containment.



# FUTURE ASPECTS

- > Team/organization
- **G** Citizen
- Business and agriculture
- **Education**
- **Government**
- > Declaring a 'proclaimed' area under an Act of Parliament
- Proper protection of salt storage and minimize use of salt by using alternative deicing materials.
- Collection and study of present data can be analyses to establish current conditions and to make future condition predictions.

#### What we should do ?



- > Use pesticides and fertilizers on your garden with care.
- > Never tip paint, chemicals or oil into street drains.
- > Store, handle and dispose of chemicals safely.
- Plant local native plants in your garden and road verge to save water and fertilizers.
- Whether we choose to drive to the corner store rather than walk or ride a bicycle will determine how much we personally contribute to acid and hydrocarbon emissions to the atmosphere (and ultimately to global fresh water supplies)

### Conclusion



- In developing country like India, we don't have enough resources to fulfill the basic need of drinking water. In this stage we can't expect a hard action, either politically or financially.
- Prevention and awareness is the best way to prevent groundwater contamination. This can be achieved by individual awareness and group action of society so that our ground water sources can be used by the generation to come.
- If we are not able to take an initiative action, at least than, we should support an organization or committee which is working in this direction, if any.

# Thank You

# Please any....?